4.3 Article

Genomic insights of aromatic hydrocarbon degrading Klebsiella pneumoniae AWD5 with plant growth promoting attributes: a paradigm of soil isolate with elements of biodegradation

Journal

3 BIOTECH
Volume 8, Issue -, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13205-018-1134-1

Keywords

Klebsiella pneumoniae; Genome; Biodegradation; Hydrocarbons; Cleavage pathway; Heavy metal

Funding

  1. DBT, Govt of India

Ask authors/readers for more resources

This research employs draft genome sequence data of Klebsiella pneumoniae AWD5 to explore genes that contribute to the degradation of polyaromatic hydrocarbon (PAH) and stimulate plant growth, for rhizosphere-mediated bioremediation. Annotation analysis suggests that the strain AWD5 not only possess gene clusters for PAH utilization, but also for utilization of benzoate, fluorobenzoate, phenylacetate (paa), hydroxyphenylacetic acid (hpa), 3-hydroxyphenyl propionate (mhp). A comparative genome analysis revealed that the genome of AWD5 was highly similar with genomes of environmental as well as clinical K. pneumoniae isolates. The artemis output confirmed that there are 139 different genes present in AWD5 which were absent in genome of clinical strain K. pneumoniae ATCC BAA-2146, and 25 genes were identified to be present in AWD5 genome but absent in genome of environmental strain K. pneumoniae KP-1. Pathway analyzed using Kyoto Encyclopedia of Genes and Genomes enzyme database revealed the presence of gene clusters that code for enzymes to initiate the opening of aromatic rings. The polyaromatic hydrocarbon and benzoate degradation were found to be metabolized through ortho-cleavage pathway, mineralizing the compounds to TCA cycle intermediates. Genes for plant growth promoting attributes such as Indole acetic acid (IAA) synthesis, siderophore production, and phosphate solubilization were detected in the genome. These attributes were verified in vitro, including IAA (14.75 mu g/ml), siderophore production (13.56%), phosphate solubilization (198.28 ng/ml), and ACC deaminase (0.118 mM alpha-ketobutyrate/mg) in the presence of pyrene, and also compared with results obtained in glucose amended medium. K. pneumoniae AWD5 enhanced the growth of Jatropha curcas in the presence of pyrene-contaminated soil. Moreover, AWD5 harbors heavy metal resistance genes indicating adaptation to contaminants. The study revealed the genomic attributes of K. pneumoniae AWD5 for its catabolic characteristics for different aromatic compounds, which makes it suitable for rhizoremediation of PAH-contaminated soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available