4.6 Article

Desilicated ZSM-5 Zeolites for the Production of Renewable p-Xylene via Diels-Alder Cycloaddition of Dimethylfuran and Ethylene

Journal

CATALYSTS
Volume 8, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/catal8060253

Keywords

renewable p-xylene; Diels-Alder; desilication; dimethylfuran; biomass; ZSM-5; hierarchical zeolites; renewable aromatics

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/K014773/1]
  2. Higher Committee for Education Development in Iraq
  3. EPSRC [EP/K014773/1] Funding Source: UKRI

Ask authors/readers for more resources

The selective production of p-xylene and other aromatics starting from sugars and bioderived ethylene offers great promise and can eliminate the need for separation of xylene isomers, as well as decreasing dependency on fossil resources and CO2 emissions. Although the reaction is known, the microporosity of traditional commercial zeolites appears to be a limiting factor. In this work, we demonstrate for the first time that simply desilication of microporous commercial zeolites by a simple NaOH treatment can greatly enhance conversion and selectivity. The [4 + 2] Diels-Alder cycloaddition of 2,5-dimethylfuran with ethylene in a pressurised reactor was investigated using a series of H-ZSM-5 catalysts with SiO2/Al2O3 ratios 30 and 80 with increasing pore size induced by desilication. X-ray diffraction, scanning electron microscopy, Al-27 magic-angle spinning nuclear magnetic resonance, temperature programmed desorption of ammonia, and nitrogen physisorption measurements were used to characterise the catalysts. The enhancement of conversion was observed for all desilicated samples compared to the untreated zeolite, and increases in temperature and ethylene pressure significantly improved both dimethylfuran conversion and selectivity to p-xylene due to the easier desorption from the zeolite's surface and the augmented cycloaddition rate, respectively. A compromise between acidity and mesoporosity was found to be the key to enhancing the activity and maximising the selectivity in the production of p-xylene from 2,5-dimethylfuran.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available