4.0 Article

Effect of Stacking Sequence on Low-Velocity Impact Behavior of Metal Laminates

Journal

PHYSICAL MESOMECHANICS
Volume 21, Issue 2, Pages 140-149

Publisher

SPRINGER
DOI: 10.1134/S1029959918020078

Keywords

adhesively bonded metal laminate; low-velocity impact; stacking sequence; finite element modeling; drop weight test method

Ask authors/readers for more resources

In this paper, the low-velocity impact behavior of metal laminates was studied experimentally and numerically. Metal laminates with different number of metal layers and different stacking sequences were investigated by examining the contact force, the contact duration, the dissipated energy and the transverse displacement as the main low-velocity impact responses. It was found that from stacking sequence perspective, the low-velocity impact responses of metal laminates were mainly affected by the volume fraction of metal layers, the material characteristics of the first and last metal layers and the number of metal layers. Increasing the number of metal layers in a constant thickness of metal laminates decreased the contact force and increased the contact duration and transverse displacement. The use of higher volume fraction of a metal material in a metal laminate caused the metal laminate to inherit more of the impact characteristics of that material. The results of this research can assist engineers to design metallic structures with desired low-velocity impact behaviors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available