4.6 Article

Enhancing oxygen permeation through Fe2NiO4-Ce0.8Tb0.2O2-δ composite membranes using porous layers activated with Pr6O11 nanoparticles

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 3, Pages 1201-1209

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta06485c

Keywords

-

Funding

  1. EU through GREEN-CC Project [608524]
  2. Spanish Government [ENE2014-57651, SEV-2016-0683]
  3. Servicio de Microscopia Electronica of the Universitat Politecnica de Valencia

Ask authors/readers for more resources

Fe2NiO4-Ce0.8Tb0.2O2-delta (NFO-CTO) composite membranes are of interest to separate oxygen from air. In this study, we investigate the influence of the catalytic activation of NFO-CTO membranes on the oxygen permeation rate. Specifically, the effect of activating porous NFO-CTO layers -coated on both sides of the dense NFO-CTO membrane - with Pr6O11 nanoparticles is studied. Measurements in the temperature range 850-700 degrees C revealed a 2-4 fold increase in the oxygen flux after coating a 30 mm-thick porous NFO-CTO layer on both membrane sides, and a 6-12 fold increase relative to the bare membrane after activating the porous layers coated on both sides of the membrane with Pr6O11 nanoparticles. No degradation of the oxygen fluxes was found in CO2-containing atmospheres. Pulse isotopic exchange measurements confirmed an increase in the oxygen surface exchange rate of more than one order of magnitude after dispersion of Pr6O11 nanoparticles on the surface of NFO-CTO composite powders. Electrochemical impedance spectroscopy measurements on symmetrical cells, using Gd-doped ceria (CGO) as the electrolyte and Pr6O11-activated NFO-CTO electrodes, showed a 10-fold decrease in the polarization resistance compared to non-infiltrated electrodes in air. Modification of porous layers by activation with Pr6O11 nanoparticles is considered a viable route to enhance the oxygen fluxes across composite membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Chemistry, Physical

A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment

Ragnar Kiebach, Steven Pirou, Lev Martinez Aguilera, Astri Bjornetun Haugen, Andreas Kaiser, Peter Vang Hendriksen, Maria Balaguer, Julio Garcia-Fayos, Jose Manuel Serra, Falk Schulze-Kueppers, Max Christie, Liudmila Fischer, Wilhelm Albert Meulenberg, Stefan Baumann

Summary: Oxygen transport membranes (OTMs) are a promising technology for oxygen production, offering lower costs and power consumption compared to cryogenic air separation or pressure swing adsorption. Dual-phase OTMs, composed of a stable ionic conductor and electronic conductor composite, have advantages over single-phase membranes in terms of chemical and mechanical stability. However, challenges remain in their large-scale employment.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Chemistry, Multidisciplinary

Intensification of catalytic CO2 methanation mediated by in-situ water removal through a high-temperature polymeric thin-film composite membrane

Sara Escorihuela, Cristina Cerda-Moreno, Fynn Weigelt, Sonia Remiro-Buenamanana, Sonia Escolastico, Alberto Tena, Sergey Shishatskiy, Torsten Brinkmann, Antonio Chica, Jose M. Serra

Summary: In this study, thin-film composite membranes (TFCM) were developed for in-situ water removal in a catalytic membrane reactor (CMR) for the Sabatier process, enabling higher catalytic stability and activity at elevated temperatures. The TFCM-mediated water extraction significantly improved CO2 conversion stability, with a notable increase in CO2 conversion rate and specific flux.

JOURNAL OF CO2 UTILIZATION (2022)

Article Multidisciplinary Sciences

Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors

Daniel Clark, Harald Malerod-Fjeld, Michael Budd, Irene Yuste-Tirados, Dustin Beeaff, Simen Aamodt, Kevin Nguyen, Luca Ansaloni, Thijs Peters, Per K. Vestre, Dimitrios K. Pappas, Maria Valls, Sonia Remiro-Buenamanana, Truls Norby, Tor S. Bjorheim, Jose M. Serra, Christian Kjolseth

Summary: Proton ceramic reactors efficiently extract hydrogen from ammonia, methane, and biogas by combining endothermic reforming reactions with heat from electrochemical gas separation and compression. The successful scale-up to a 36-cell reactor stack demonstrates its potential in efficient hydrogen production, with complete conversion and high recovery rates of methane and ammonia even at high pressures.

SCIENCE (2022)

Article Engineering, Chemical

Chemical and mechanical stability of BCZY-GDC membranes for hydrogen separation

Elisa Mercadelli, Angela Gondolini, Matteo Ardit, Giuseppe Cruciani, Cesare Melandri, Sonia Escolastico, Jose M. Serra, Alessandra Sanson

Summary: This study investigated the hydrogen permeation of BCZY-GDC asymmetric membranes for 100 hours using wet 15% CO2 in Ar as the sweep gas. The results showed that the asymmetric membranes exhibited promising and stable hydrogen permeation flux values under the test conditions, and no structural or morphological changes were detected after the testing.

SEPARATION AND PURIFICATION TECHNOLOGY (2022)

Article Chemistry, Physical

Reversible electrodes based on B-site substituted Ba0.5Sr0.5Co0.8Fe0.2O3-δ for intermediate temperature solid-oxide cells

L. Navarrete, C. Hannahan, J. M. Serra

Summary: The effect of B-site substituted cations on the stability and electrochemical performance of Ba0.5Sr0.5Co0.8Fe0.2O3-delta perovskite was investigated. The presence of these substituted cations improved stability by preventing the formation of detrimental phases and reducing the formation of carbonates. Symmetrical cell testing showed that the Sc-substituted material mixed with GDC had the lowest polarization resistance and was chosen as the cathode for the full cell construction. The composite electrode exhibited encouraging power density and stability.

SOLID STATE IONICS (2022)

Article Chemistry, Physical

On the effect of electrode material in electrical conductivity relaxation- An alternative interpretation of the two-fold relaxation behavior in La5.4WO11.1-d

Shaochen Zhu, Michel Drazkowski, Bernard A. Boukamp, Henny J. M. Bouwmeester

Summary: The oxygen and proton transport properties of La5.4WO11.1-delta were investigated, and the conductivity relaxation was found to be influenced by the diffusion coefficients and exchange coefficients of hydrogen and oxygen. The relaxation behavior was observed to vary with the magnitude of the current used in the measurements, and the use of gold electrodes and interfacial capacitances may lead to erroneous results and interpretations.

SOLID STATE IONICS (2022)

Article Chemistry, Physical

Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature

Yubing Li, Lei Zeng, Ge Pang, Xueer Wei, Mengheng Wang, Kang Cheng, Jincan Kang, Jose M. Serra, Qinghong Zhang, Ye Wang

Summary: The direct hydrogenation of CO2 to gasoline and olefins using bifunctional iron-zeolite tandem catalysts operated at high temperatures (>300 degrees C) can efficiently utilize CO2 from industrial combustion and green H2 produced by solid oxide electrolytic cells (SOEC). The optimized FeMnK+H-ZSM-5 catalyst achieves a selectivity of 70% for C5-C11 range hydrocarbons and 17% for C2-C4 lower olefins at 320 degrees C. The conversion levels of CO2 and the aromatics contents are significantly enhanced at higher temperatures.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Engineering, Chemical

The role of ionic-electronic ratio in dual-phase catalytic layers for oxygen transport permeation membranes

Marwan Laqdiem, Julio Garcia-Fayos, Laura Almar, Maria Balaguer, Jose M. Serra

Summary: Oxygen transport membranes (OTMs) are attractive for decarbonization of the industry, but the oxygen permeation remains a limitation. Dual-phase composite materials have potential as membrane candidates due to their stability under CO2 atmospheres. The phase ratio in the catalytic layers affects the surface-exchange reactions and plays a crucial role in improving the oxygen flux.

JOURNAL OF MEMBRANE SCIENCE (2023)

Article Chemistry, Physical

Impact of lattice properties on the CO2 splitting kinetics of lanthanide-doped cerium oxides for chemical looping syngas production

Marwan Laqdiem, Alfonso J. Carrillo, Georgios Dimitrakopoulos, Maria Balaguer, Julio Garcia-Fayos, Ahmed F. Ghoniem, Jose M. Serra

Summary: This study investigates the application of cerium oxide (CeO2) particles in solar-driven thermochemical cycles and explores the effect of doping with other cations on oxygen-vacancy concentration and crystal lattice. The results show that doping can enhance fuel yield and redox oxygen-exchange kinetics.

SOLID STATE IONICS (2023)

Article Chemistry, Physical

Promotion of mixed protonic-electronic transport in La5.4WO11.1-& delta; membranes under H2S atmospheres

S. Escolastico, M. Balaguer, C. Solis, F. Toldra-Reig, S. Somacescu, U. Gerhards, A. Aguadero, K. Haas-Santo, R. Dittmeyer, J. M. Serra

Summary: Catalytic membrane reactors based on H2-separation membranes can enhance the performance of thermodynamically-limited reactions. This study characterizes the stability of La5.4WO11.1-& delta; protonic membrane material under H2S conditions and demonstrates the changes in crystalline structure and transport properties caused by the incorporation of sulfur.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Multidisciplinary

Oxide nanoparticle exsolution in Lu-doped (Ba,La)CoO3

Daria Balcerzak, Iga Szpunar, Ragnar Strandbakke, Sarmad W. Saeed, Calliope Bazioti, Aleksandra Mielewczyk-Gryn, Piotr Winiarz, Alfonso J. Carrillo, Maria Balaguer, Jose M. Serra, Maria Gazda, Sebastian Wachowski

Summary: This study investigated the Lu doping of Ba0.5La0.5CoO3 and its effect on the exsolution of oxide nanoparticles. The Lu doping caused phase segregation into the main BLCO-Lu phase and the secondary BCO-Lu phase. Exsolution of BCO-Lu nanoparticles on the main BLCO-Lu phase and vice versa was observed, indicating mutual exsolution of oxide NPs. Trace amount of the BaLuCo4O7 phase was also detected. The size and shape of the exsolved oxide NPs could be controlled by varying the annealing temperature. The findings provide potential for designing novel, more catalytically active materials for future electrochemical devices.

CRYSTENGCOMM (2023)

Article Chemistry, Inorganic & Nuclear

Energetics of formation and stability in high pressure steam of barium lanthanide cobaltite double perovskites

Aleksandra Mielewczyk-Gryn, Shuhao Yang, Maria Balaguer, Ragnar Strandbakke, Magnus H. Sorby, Iga Szpunar, Agnieszka Witkowska, Sebastian Wachowski, Jose M. Serra, Alexandra Navrotsky, Maria Gazda

Summary: This study investigates the formation energetics and stability of BaLnCo(2)O(6-delta) (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1-xLaxCo2O6-delta, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites under high water partial pressure. These materials have potential applications in electrochemical devices as positrodes. It is found that all investigated materials are thermodynamically stable relative to binary oxides and exhibit exothermic enthalpies of formation. The BGLC compounds show higher negative formation enthalpies compared to single-Ln compositions, but the BLnC series demonstrate better chemical stability under high steam pressures.

DALTON TRANSACTIONS (2023)

Article Chemistry, Multidisciplinary

Microwave-Driven Exsolution of Ni Nanoparticles in A-Site Deficient Perovskites

Andres Lopez-Garcia, Aitor Dominguez-Saldana, Alfonso J. Carrillo, Laura Navarrete, Maria I. Valls, Beatriz Garcia-Banos, Pedro J. Plaza-Gonzalez, Jose Manuel Catala-Civera, Jose Manuel Serra

Summary: Exsolution has become a promising method for generating metallic nanoparticles, offering better stability and robustness compared to conventional deposition methods. Alternative exsolution methods that do not rely on high-temperature reduction are being explored, such as utilizing electrochemical potentials or plasma technologies. In this study, a method based on pulsed microwave radiation is proposed for driving the exsolution of metallic nanoparticles, enabling high scalability with short exposure times and low temperatures.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Modulating redox properties of solid-state ion-conducting materials using microwave irradiation

J. M. Serra, M. Balaguer, J. Santos-Blasco, J. F. Borras-Morell, B. Garcia-Banos, P. Plaza-Gonzalez, D. Catalan-Martinez, F. Penaranda-Foix, A. Dominguez, L. Navarrete, J. M. Catala-Civera

Summary: This study investigates microwave-induced redox transformations on solid-state ion-conducting materials, and finds that reduction is triggered at a specific temperature leading to a significant increase in electric conductivity. The effectiveness of the redox process is influenced by material composition, gas environment, and microwave power intensity, with fine-grained materials showing amplified effects.

MATERIALS HORIZONS (2023)

Article Chemistry, Inorganic & Nuclear

Structural properties of mixed conductor Ba1-xGd1-yLax+yCo2O6-δ

Ragnar Strandbakke, David S. Wragg, Magnus H. Sorby, Matylda N. Guzik, Anette E. Gunnaes, Iga Szpunar, Sebastian Lech Wachowski, Maria Balaguer, Patricia A. Carvalho, Aleksandra Mielewczyk-Gryn, Jose M. Serra, Truls Norby

Summary: BGLC compositions with large compositional ranges of Ba, Gd, and La show significant compositional flexibility and the ability to tune functional properties, as well as anisotropic chemical expansion.

DALTON TRANSACTIONS (2022)

Article Chemistry, Physical

Enhanced moisture sorption through regulated MIL-101(Cr) synthesis and its integration onto heat exchangers

Mei Gui Vanessa Wee, Amutha Chinnappan, Runxin Shang, Poh Seng Lee, Seeram Ramakrishna

Summary: Cooling processes, from residences to industries, require a lot of energy and are essential. This study introduces MIL-101(Cr), a new desiccant, to heat exchangers for more efficient cooling. By improving the synthesis method and using a special binder, the MIL-101(Cr)-coated heat exchanger shows improved water uptake capacity and lower regeneration temperature.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synthesis of completely solvent-free biomedical waterborne polyurethane with excellent mechanical property retention and satisfactory water absorption

Ao Zhen, Guanyu Zhang, Ao Wang, Feng Luo, Jiehua Li, Hong Tan, Zhen Li

Summary: In this study, a solvent-free microemulsion method was used to synthesize waterborne polyurethane (WPU) material with high retention of mechanical properties and satisfactory water absorption rates. The material showed excellent biocompatibility and has broad application potential in the field of biomedicine.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent progress in eutectic gallium indium (EGaIn): surface modification and applications

Wensong Ge, Rui Wang, Xiaoyang Zhu, Houchao Zhang, Luanfa Sun, Fei Wang, Hongke Li, Zhenghao Li, Xinyi Du, Huangyu Chen, Fan Zhang, Huifa Shi, Huiqiang Hu, Yongming Xi, Jiankang He, Liang Hu, Hongbo Lan

Summary: This paper reviews the research on the surface tension of eutectic gallium-indium alloys (EGaIn) in the field of stretchable electronics. It covers the principles of oxide layer formation, factors influencing surface tension, and methods for surface modification of liquid metals. The paper also discusses the applications of EGaIn surface modification in different fields and highlights the challenges still faced and the future outlook.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Nature-inspired sustainable solar evaporators for seawater desalination

Xiang Song, Lianghao Jia, Zhengen Wei, Tao Xiang, Shaobing Zhou

Summary: This paper provides an overview of the application, preparation, and role of biomimetic structures in solar evaporators with improved evaporation rate and lifetime.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synergistic carrier and phonon transport advance Ag dynamically-doped n-type PbTe thermoelectrics via Mn alloying

Wei Yuan, Qian Deng, Dong Pan, Xiang An, Canyang Zhao, Wenjun Su, Zhengmin He, Qiang Sun, Ran Ang

Summary: Optimizing the performance of n-type PbTe thermoelectric materials is crucial for practical applications. Dynamic doping has emerged as an effective method to improve the performance of n-type PbTe by optimizing the carrier concentration. This study demonstrates the significance of Mn alloying in enhancing the performance of Ag-doped n-type PbTe by creating a hierarchical structure to suppress thermal transport and improving the Seebeck coefficient.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting

Xiaoyan Wang, Meiqi Geng, Shengjun Sun, Qian Xiang, Shiyuan Dong, Kai Dong, Yongchao Yao, Yan Wang, Yingchun Yang, Yongsong Luo, Dongdong Zheng, Qian Liu, Jianming Hu, Qian Wu, Xuping Sun, Bo Tang

Summary: This review provides a comprehensive analysis of the progress and challenges in the field of bifunctional electrocatalysts and efficient electrolyzers for seawater splitting. It summarizes recent advancements and proposes future perspectives for highly efficient bifunctional electrocatalysts and electrolyzers.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Sequence-dependent self-assembly of supramolecular nanofibers in periodic dynamic block copolymers

Jason K. Phong, Christopher B. Cooper, Lukas Michalek, Yangju Lin, Yuya Nishio, Yuran Shi, Huaxin Gong, Julian A. Vigil, Jan Ilavsky, Ivan Kuzmenko, Zhenan Bao

Summary: Dynamic block copolymers (DBCPs) combine the phase separation of traditional block copolymers with the supramolecular self-assembly of periodic dynamic polymers, resulting in the spontaneous self-assembly of high aspect ratio nanofibers with well-ordered PEG and PDMS domains. DBCPs with a periodic block sequence exhibit superior properties compared to those with a random sequence, including delayed onset of terminal flow and higher ionic conductivity values.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Moisture-triggered proton conductivity switching in metal-organic frameworks: role of coordinating solvents

Hong Kyu Lee, Yasaswini Oruganti, Jonghyeon Lee, Seunghee Han, Jihan Kim, Dohyun Moon, Min Kim, Dae-Woon Lim, Hoi Ri Moon

Summary: This study reports the moisture-triggered proton-conductivity switching behavior in Zn5FDC MOFs induced by the presence and absence of coordinating solvents, which illustrates the significant role of coordinating solvents in conductivity variation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Spiro[fluorene-9,9′-xanthene]-based hole shuttle materials for effective defect passivation in perovskite solar cells

Bommaramoni Yadagiri, Sanjay Sandhu, Ashok Kumar Kaliamurthy, Francis Kwaku Asiam, Jongdeok Park, Appiagyei Ewusi Mensah, Jae-Joon Lee

Summary: The molecular engineering of the interface modulator between the perovskite and hole transporting material is crucial for achieving satisfactory performance and stability of perovskite solar cells. In this study, cruciform-shaped dual functional organic materials were employed as surface passivation and hole transporting interfacial layers in perovskite solar cells. The use of these materials significantly improved the power conversion efficiency of the solar cells.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Joaquin Martinez-Ortigosa, Reisel Millan, Jorge Simancas, Manuel Hernandez-Rodriguez, J. Alejandro Vidal-Moya, Jose L. Jorda, Charlotte Martineau-Corcos, Vincent Sarou-Kanian, Mercedes Boronat, Teresa Blasco, Fernando Rey

Summary: This study investigates the synthesis of all-silica RTH zeolites using triisopropyl(methyl)phosphonium as the organic SDA. The results show the formation of two distinct crystalline phases under different synthesis conditions, with fluoride bonding to different silicon sites. It demonstrates the possibility of controlling the placement of fluoride in RTH zeolites through synthesis conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting

Luyao Zheng, Cong Liu, Wenbiao Zhang, Boxu Gao, Tianlan Yan, Yahong Zhang, Xiaoming Cao, Qingsheng Gao, Yi Tang

Summary: This study successfully improves the efficiency and stability of water splitting by constructing a heterostructured electrocatalyst. The catalyst shows extraordinary performance and could offer an effective approach for the sustainable production of hydrogen.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Lanthanide contraction effect on the alkaline hydrogen evolution and oxidation reactions activity in platinum-rare earth nanoalloys

Carlos A. Campos-Roldan, Raphael Chattot, Frederic Pailloux, Andrea Zitolo, Jacques Roziere, Deborah J. Jones, Sara Cavaliere

Summary: This study systematically evaluated the hydrogen evolution/oxidation reactions on a series of Pt-rare earth nanoalloys in alkaline media, and identified the effect of the lanthanide contraction. The experimental results revealed that the chemical nature of the rare earth modulates the adsorption and mobility of oxygenated-species, enhancing the kinetics of the reactions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Correlating the structural transformation and properties of ZIF-67 during pyrolysis, towards electrocatalytic oxygen evolution

Sara Frank, Mads Folkjaer, Mads L. N. Nielsen, Melissa J. Marks, Henrik S. Jeppesen, Marcel Ceccato, Simon J. L. Billinge, Jacopo Catalano, Nina Lock

Summary: This study investigates the thermal decomposition of ZIF-67 and its correlation with structural evolution and electrocatalytic performance. The researchers used in situ X-ray absorption spectroscopy and total scattering techniques to analyze the process. They found that disorder emerges at lower temperatures and that extending the pyrolysis process can result in materials with superior electrochemical properties.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

SiO2 assisted Cu0-Cu+-NH2 composite interfaces for efficient CO2 electroreduction to C2+ products

Zi-Yang Zhang, Hao Tian, Han Jiao, Xin Wang, Lei Bian, Yuan Liu, Nithima Khaorapapong, Yusuke Yamauchi, Zhong-Li Wang

Summary: By constructing Cu-0-Cu+-NH2 composite interfaces with the assistance of SiO2, the electrochemical CO2 reduction reaction (CO2RR) achieves high Faraday efficiency and current density for C2+ production, improving the productivity of carbon cycle.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution

Ting Wang, Ruijuan Zhang, Pengda Zhai, Mingjie Li, Xinying Liu, Chaoxu Li

Summary: This study successfully exfoliated COFs using a simple electrochemical method, which resulted in improved photocatalytic performance for COFs and enriched the fabrication approach of COF exfoliation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)