4.6 Article

Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni-yttria stabilized zirconia cathodes for solid oxide electrolysis cells

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 6, Pages 2721-2729

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta08249e

Keywords

-

Funding

  1. National Natural Science Foundation of China [91645101]
  2. Anhui Estone Materials Technology Co., Ltd. [2016340022003195]

Ask authors/readers for more resources

BaCO3 is primarily demonstrated as an excellent synergistic catalyst for efficient electro-reduction of H2O/CO2 to H-2/CO at the state-of-the-art Ni-YSZ (yttria-stabilized zirconia) cathodes for solid oxide electrolysis cells (SOECs) with YSZ electrolytes and strontium doped lanthanum manganite oxygen electrodes. BaCO3 nanoparticles, which are deposited onto porous Ni-YSZ using the infiltration process, can significantly improve the SOEC performance such as increasing the electrode interfacial polarization conductivity over 50% and promoting the electrolysis current density by a factor of up to 2 for the electrolysis of H2O to H-2, CO2 to CO, and co-electrolysis of H2O-CO2 to H-2-CO at 800 degrees C. In addition, it seems that BaCO3 can improve the SOEC durability for the co-electrolysis of H2O-CO2. The improvement is associated with an enhanced surface charge transfer process, which is the rate-determining step for the reduction reaction, as shown by analyzing the AC impedance spectrum measured with a three-electrode configuration. The highest improvement is achieved with CO2 reduction possibly due to the additional enhancement in the adsorption/dissociation process by BaCO3 as revealed with temperature programmed CO2 desorption analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Energy & Fuels

(La,Sr)(Ti,Fe)O3-δ perovskite with in-situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell

Lijie Zhang, Yihang Li, Binze Zhang, Yanhong Wan, Zheqiang Xu, Shaowei Zhang, Tenglong Zhu, Changrong Xia

Summary: This study developed a high performance fuel electrode material by utilizing in-situ metal exsolution to form FeNi3 nanoparticles, which improved the electrochemical performance of RSOC and demonstrated stable performance through operation tests.

INTERNATIONAL JOURNAL OF ENERGY RESEARCH (2021)

Article Chemistry, Physical

Understanding the favorable CO2 tolerance of Ca-doped LaFeO3 perovskite cathode for solid oxide fuel cells

Mingchao Su, Daoming Huan, Xueyu Hu, Kang Zhu, Ranran Peng, Changrong Xia

Summary: The study demonstrates that Ca-doped LaCoO3-delta and LaCoO3-delta oxides can effectively overcome CO2 poisoning issues, showing high electrical conductivity and thermal compatibility. Compared to LCCo, LCFe exhibits better CO2 tolerance and higher electrochemical performance.

JOURNAL OF POWER SOURCES (2022)

Article Chemistry, Physical

A Strategy to Enhance the Catalytic Activity of Electrode Materials by Doping Bismuth for Symmetrical Solid Oxide Electrolysis Cells

Yanhong Wan, Yi Yang, Yalin Lu, Ranran Peng, Changrong Xia

Summary: This study found that doping bismuth into lanthanum chromate-based perovskites can significantly enhance the electrochemical activity for CO2 reduction reaction and improve the physicochemical properties, leading to a substantial improvement in the performance of symmetrical solid oxide electrolysis cells.

ACS APPLIED ENERGY MATERIALS (2022)

Article Nanoscience & Nanotechnology

Tuning the Phase Transition of SrFeO3-δ by Mn toward Enhanced Catalytic Activity and CO2 Resistance for the Oxygen Reduction Reaction

Lu Zhang, Daoming Huan, Kang Zhu, Pengqi Dai, Ranran Peng, Changrong Xia

Summary: Doping of Mn in SrFeO(3-delta) perovskites can regulate their phase structure, enhance cathode performance, and improve stability in CO2 atmospheres.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Nanoscience & Nanotechnology

Perovskite Oxyfluoride Ceramic with In Situ Exsolved Ni-Fe Nanoparticles for Direct CO2 Electrolysis in Solid Oxide Electrolysis Cells

Shaowei Zhang, Yunan Jiang, Hairui Han, Yihang Li, Changrong Xia

Summary: This study proposes a Ni and F co-doping strategy to improve the electrocatalysts for CO2 reduction reaction (CO2RR). The results show that F-doping and Ni-Fe exsolution enhance CO2 adsorption and reaction rate, while reducing interfacial polarization resistance. The direct CO2 electrolysis in the SOEC achieves a high current density and stability.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Nanoscience & Nanotechnology

Cobalt-Free Double Perovskite Oxide as a Promising Cathode for Solid Oxide Fuel Cells

Binze Zhang, Shaowei Zhang, Hairui Han, Kaibin Tang, Changrong Xia

Summary: The partial replacement of iron element with gallium in PrBaFe2O5+delta can improve its electrochemical performance as a cathode material for intermediate-temperature solid oxide fuel cells. Specifically, PrBaFe1.9Ga0.1O5+delta exhibits improved physicochemical properties and electrochemical properties, such as an increased oxygen surface exchange coefficient (kchem) and enhanced oxygen dissociation process. Moreover, the anode-supported single cell with PBFG0.1 cathode shows a higher peak power density and good stability in long-term operation.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Materials Science, Ceramics

Engineering oxygen vacancy to accelerate proton conduction in Y-doped BaZrO3

Kang Zhu, Nai Shi, Lijie Zhang, Daoming Huan, Xinyu Li, Xiaoyu Zhang, Rui Song, Changrong Xia, Ranran Peng, Yalin Lu

Summary: Oxygen vacancy engineering via calcium-doping is proposed and validated to improve proton conduction in proton conducting oxides. The presence of more oxygen vacancies and the tailored position of vacancies accelerate proton diffusion and increase proton concentration. The doped compound BZCa1Y2 exhibits higher proton concentration, ionic conductivity, and proton diffusion coefficient compared to BZY2.

CERAMICS INTERNATIONAL (2023)

Article Chemistry, Physical

Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode

Binze Zhang, Shaowei Zhang, Zhen Zhang, Kaibin Tang, Changrong Xia

Summary: A highly efficient and robust metal-supported solid oxide electrolysis cell (SOEC) is developed, which exhibits redox stability, minimal ohmic loss, high conductivity, enlarged specific surface area, and enhanced CO2 adsorption property. The metal-supported SOEC with the infiltrated cathode shows excellent current densities and stability, making it a promising configuration for direct CO2 electrolysis.

JOURNAL OF POWER SOURCES (2023)

Article Chemistry, Physical

Method to determine the oxygen reduction reaction kinetics via porous dual-phase composites based on electrical conductivity relaxation

Hairui Han, Xueyu Hu, Binze Zhang, Shaowei Zhang, Yanxiang Zhang, Changrong Xia

Summary: A method was proposed to determine the chemical surface exchange coefficient (k(chem)) and reveal the ORR process of porous dual-phase composites based on electrical conductivity relaxation measurements and the distribution of characteristic time (DCT) model. The method was demonstrated with porous LSCF-SDC composites, and it was found that the ORR process involved a combination of gas diffusion, surface exchange, and their interaction. The addition of SDC greatly improved k(chem) in the dual-phase composites, with the highest improvement achieved at around 10% SDC volume fraction. The method is also applicable for analyzing CO2 reduction and vapor splitting reactions in solid oxide electrolysis cells.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Engineering, Environmental

In-situ formed CuFe2O4 spinel coating by electroplating method for solid oxide fuel cell interconnect

Yongtao Zhao, Shaowei Zhang, Mingchao Su, Daoming Huan, Ranran Peng, Changrong Xia

Summary: In this study, a stoichiometric CuFe2 alloy was successfully electroplated on the surface of SUS 430, forming a CuFe2O4 spinel coating through in-situ thermal oxidation. The mechanism of CuFe2 alloy electroplating was revealed using density functional theory calculations and COMSOL simulations. The dense CuFe2O4 coating effectively blocked the outward volatile Cr species and suppressed the increase in area specific resistance (ASR) in long-term testing. The practical application of CuFe2O4-coated SUS 430 showed improved durability due to mitigated chromium poisoning.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Applied

LiCoO2 sintering aid towards cathode-interface-enhanced garnet electrolytes

Xiaoye Liu, Xiangkun Kong, Wenyi Xiang, Yining Jiang, Bingqinq Xiong, Weiwei Ping, Changrong Xia, Daoming Huan, Chengwei Wang

Summary: In this study, a new garnet-type composite solid-state electrolyte (LLBZNO-LCO) was proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing. The addition of a small amount of LCO significantly decreased the interface resistance and reduced the sintering temperature of garnet-type LLBZNO. The all-solid-state battery based on the sintered LLBZNO-LCO SSE showed excellent cycling stability. This approach provides a new strategy for optimizing the comprehensive performance of garnet SSE.

JOURNAL OF ENERGY CHEMISTRY (2023)

Article Materials Science, Multidisciplinary

Highly Active Cathode Achieved by Constructing Surface Proton Acid Sites through Electronic Regulation of Heteroatoms

Xinyu Li, Zemin Chen, Daoming Huan, Bingbing Qiu, Kang Zhu, Zeming Qi, Hengjie Liu, Changrong Xia, Ranran Peng, Yalin Lu

Summary: This study demonstrates the successful modification of proton-conducting solid oxide fuel cell (PCFC) cathode surfaces using boron (B), leading to improved CO2 resistance and surface electrocatalytic activity for proton-involved oxygen reduction reaction (P-ORR). The introduction of B raises the surface Bronsted acid (-OH) concentration while suppressing the surface Lewis acidity, ultimately enhancing the power density of the PCFC.

ACS MATERIALS LETTERS (2023)

Article Chemistry, Physical

Carbon dioxide reduction processes on a samarium doped ceria electrocatalyst with exsolved Fe particles

Lujuan Ye, Kang Zhu, Yunan Jiang, Shaowei Zhang, Ranran Peng, Changrong Xia

Summary: Solid oxide electrolysis cells (SOECs) can efficiently convert CO2 into valuable chemicals. Ceria with exsolved Fe nanoparticles on its surface shows enhanced electrochemical performance for CO2 reduction reaction (CO2RR).

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Perspective on high-temperature surface oxygen exchange in a porous mixed ionic-electronic conductor for solid oxide cells

Hairui Han, Yunan Jiang, Shaowei Zhang, Changrong Xia

Summary: This perspective paper estimates the possible physiochemical processes for the oxygen reduction reaction (ORR) in porous mixed ionic-electronic conductors (MIECs) by comparing the oxygen supply/consumption fluxes through calculation. It also discusses the potential problems associated with different characterization techniques and reveals the significant delay in the ORR process caused by gas diffusion. The aim of this paper is to recommend a reasonable method to characterize the true ORR kinetics of porous electrodes and quantify the effect of gas diffusion.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Chemistry, Physical

Doped ceria with exsolved Fe0 nanoparticles as a Sr-free cathode for CO2 electrolysis in SOECs at reduced temperatures

Yunan Jiang, Lujuan Ye, Shaowei Zhang, Changrong Xia

Summary: Fe-exsolved ceria is a highly efficient cathode for CO2 electrolysis in SOEC, where dopant Fe is partially reduced to dispersed Fe-0 nanoparticles, greatly enhancing the catalytic activity for CO2 reduction. At 700 degrees C, the cathode polarization resistance is 0.57 omega cm(2), and the chemical surface exchange coefficient for CO2 reduction is 1.68 x 10(-3) cm s(-1), outperforming metal-exsolved perovskite cathodes at 800 degrees C.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Chemistry, Physical

Enhanced moisture sorption through regulated MIL-101(Cr) synthesis and its integration onto heat exchangers

Mei Gui Vanessa Wee, Amutha Chinnappan, Runxin Shang, Poh Seng Lee, Seeram Ramakrishna

Summary: Cooling processes, from residences to industries, require a lot of energy and are essential. This study introduces MIL-101(Cr), a new desiccant, to heat exchangers for more efficient cooling. By improving the synthesis method and using a special binder, the MIL-101(Cr)-coated heat exchanger shows improved water uptake capacity and lower regeneration temperature.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synthesis of completely solvent-free biomedical waterborne polyurethane with excellent mechanical property retention and satisfactory water absorption

Ao Zhen, Guanyu Zhang, Ao Wang, Feng Luo, Jiehua Li, Hong Tan, Zhen Li

Summary: In this study, a solvent-free microemulsion method was used to synthesize waterborne polyurethane (WPU) material with high retention of mechanical properties and satisfactory water absorption rates. The material showed excellent biocompatibility and has broad application potential in the field of biomedicine.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent progress in eutectic gallium indium (EGaIn): surface modification and applications

Wensong Ge, Rui Wang, Xiaoyang Zhu, Houchao Zhang, Luanfa Sun, Fei Wang, Hongke Li, Zhenghao Li, Xinyi Du, Huangyu Chen, Fan Zhang, Huifa Shi, Huiqiang Hu, Yongming Xi, Jiankang He, Liang Hu, Hongbo Lan

Summary: This paper reviews the research on the surface tension of eutectic gallium-indium alloys (EGaIn) in the field of stretchable electronics. It covers the principles of oxide layer formation, factors influencing surface tension, and methods for surface modification of liquid metals. The paper also discusses the applications of EGaIn surface modification in different fields and highlights the challenges still faced and the future outlook.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Nature-inspired sustainable solar evaporators for seawater desalination

Xiang Song, Lianghao Jia, Zhengen Wei, Tao Xiang, Shaobing Zhou

Summary: This paper provides an overview of the application, preparation, and role of biomimetic structures in solar evaporators with improved evaporation rate and lifetime.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synergistic carrier and phonon transport advance Ag dynamically-doped n-type PbTe thermoelectrics via Mn alloying

Wei Yuan, Qian Deng, Dong Pan, Xiang An, Canyang Zhao, Wenjun Su, Zhengmin He, Qiang Sun, Ran Ang

Summary: Optimizing the performance of n-type PbTe thermoelectric materials is crucial for practical applications. Dynamic doping has emerged as an effective method to improve the performance of n-type PbTe by optimizing the carrier concentration. This study demonstrates the significance of Mn alloying in enhancing the performance of Ag-doped n-type PbTe by creating a hierarchical structure to suppress thermal transport and improving the Seebeck coefficient.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting

Xiaoyan Wang, Meiqi Geng, Shengjun Sun, Qian Xiang, Shiyuan Dong, Kai Dong, Yongchao Yao, Yan Wang, Yingchun Yang, Yongsong Luo, Dongdong Zheng, Qian Liu, Jianming Hu, Qian Wu, Xuping Sun, Bo Tang

Summary: This review provides a comprehensive analysis of the progress and challenges in the field of bifunctional electrocatalysts and efficient electrolyzers for seawater splitting. It summarizes recent advancements and proposes future perspectives for highly efficient bifunctional electrocatalysts and electrolyzers.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Sequence-dependent self-assembly of supramolecular nanofibers in periodic dynamic block copolymers

Jason K. Phong, Christopher B. Cooper, Lukas Michalek, Yangju Lin, Yuya Nishio, Yuran Shi, Huaxin Gong, Julian A. Vigil, Jan Ilavsky, Ivan Kuzmenko, Zhenan Bao

Summary: Dynamic block copolymers (DBCPs) combine the phase separation of traditional block copolymers with the supramolecular self-assembly of periodic dynamic polymers, resulting in the spontaneous self-assembly of high aspect ratio nanofibers with well-ordered PEG and PDMS domains. DBCPs with a periodic block sequence exhibit superior properties compared to those with a random sequence, including delayed onset of terminal flow and higher ionic conductivity values.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Moisture-triggered proton conductivity switching in metal-organic frameworks: role of coordinating solvents

Hong Kyu Lee, Yasaswini Oruganti, Jonghyeon Lee, Seunghee Han, Jihan Kim, Dohyun Moon, Min Kim, Dae-Woon Lim, Hoi Ri Moon

Summary: This study reports the moisture-triggered proton-conductivity switching behavior in Zn5FDC MOFs induced by the presence and absence of coordinating solvents, which illustrates the significant role of coordinating solvents in conductivity variation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Spiro[fluorene-9,9′-xanthene]-based hole shuttle materials for effective defect passivation in perovskite solar cells

Bommaramoni Yadagiri, Sanjay Sandhu, Ashok Kumar Kaliamurthy, Francis Kwaku Asiam, Jongdeok Park, Appiagyei Ewusi Mensah, Jae-Joon Lee

Summary: The molecular engineering of the interface modulator between the perovskite and hole transporting material is crucial for achieving satisfactory performance and stability of perovskite solar cells. In this study, cruciform-shaped dual functional organic materials were employed as surface passivation and hole transporting interfacial layers in perovskite solar cells. The use of these materials significantly improved the power conversion efficiency of the solar cells.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Joaquin Martinez-Ortigosa, Reisel Millan, Jorge Simancas, Manuel Hernandez-Rodriguez, J. Alejandro Vidal-Moya, Jose L. Jorda, Charlotte Martineau-Corcos, Vincent Sarou-Kanian, Mercedes Boronat, Teresa Blasco, Fernando Rey

Summary: This study investigates the synthesis of all-silica RTH zeolites using triisopropyl(methyl)phosphonium as the organic SDA. The results show the formation of two distinct crystalline phases under different synthesis conditions, with fluoride bonding to different silicon sites. It demonstrates the possibility of controlling the placement of fluoride in RTH zeolites through synthesis conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting

Luyao Zheng, Cong Liu, Wenbiao Zhang, Boxu Gao, Tianlan Yan, Yahong Zhang, Xiaoming Cao, Qingsheng Gao, Yi Tang

Summary: This study successfully improves the efficiency and stability of water splitting by constructing a heterostructured electrocatalyst. The catalyst shows extraordinary performance and could offer an effective approach for the sustainable production of hydrogen.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Lanthanide contraction effect on the alkaline hydrogen evolution and oxidation reactions activity in platinum-rare earth nanoalloys

Carlos A. Campos-Roldan, Raphael Chattot, Frederic Pailloux, Andrea Zitolo, Jacques Roziere, Deborah J. Jones, Sara Cavaliere

Summary: This study systematically evaluated the hydrogen evolution/oxidation reactions on a series of Pt-rare earth nanoalloys in alkaline media, and identified the effect of the lanthanide contraction. The experimental results revealed that the chemical nature of the rare earth modulates the adsorption and mobility of oxygenated-species, enhancing the kinetics of the reactions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Correlating the structural transformation and properties of ZIF-67 during pyrolysis, towards electrocatalytic oxygen evolution

Sara Frank, Mads Folkjaer, Mads L. N. Nielsen, Melissa J. Marks, Henrik S. Jeppesen, Marcel Ceccato, Simon J. L. Billinge, Jacopo Catalano, Nina Lock

Summary: This study investigates the thermal decomposition of ZIF-67 and its correlation with structural evolution and electrocatalytic performance. The researchers used in situ X-ray absorption spectroscopy and total scattering techniques to analyze the process. They found that disorder emerges at lower temperatures and that extending the pyrolysis process can result in materials with superior electrochemical properties.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

SiO2 assisted Cu0-Cu+-NH2 composite interfaces for efficient CO2 electroreduction to C2+ products

Zi-Yang Zhang, Hao Tian, Han Jiao, Xin Wang, Lei Bian, Yuan Liu, Nithima Khaorapapong, Yusuke Yamauchi, Zhong-Li Wang

Summary: By constructing Cu-0-Cu+-NH2 composite interfaces with the assistance of SiO2, the electrochemical CO2 reduction reaction (CO2RR) achieves high Faraday efficiency and current density for C2+ production, improving the productivity of carbon cycle.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution

Ting Wang, Ruijuan Zhang, Pengda Zhai, Mingjie Li, Xinying Liu, Chaoxu Li

Summary: This study successfully exfoliated COFs using a simple electrochemical method, which resulted in improved photocatalytic performance for COFs and enriched the fabrication approach of COF exfoliation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)