4.7 Article

Interactive Effects of Elevated CO2 and N Fertilization on Yield and Quality of Tomato Grown Under Reduced Irrigation Regimes

Journal

FRONTIERS IN PLANT SCIENCE
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2018.00328

Keywords

CO2; nitrogen; reduced irrigation; yield; fruit quality; tomato

Categories

Funding

  1. National Natural Science Foundation of China [51725904, 51439006, 51621061]
  2. National Key Research Program [2016YFC0400207]
  3. Chinese Scholarship Council (CSC)

Ask authors/readers for more resources

The interactive effects of CO2 elevation, N fertilization, and reduced irrigation regimes on fruit yield (FY) and quality in tomato (Solanum lycopersicum L.) were investigated in a split-root pot experiment. The plants were grown in two separate climate-controlled greenhouse cells at atmospheric [CO2] of 400 and 800 ppm, respectively. In each cell, the plants were fertilized at either 100 or 200 mg N kg(-1) soil and were either irrigated to full water holding capacity [i.e., a volumetric soil water content of 18%; full irrigation (FI)], or using 70% water of FI to the whole pot [deficit irrigation (DI)] or alternately to only half of the pot [partial root-zone irrigation (PRI)]. The yield and fruit quality attributes mainly from sugars (sucrose, fructose, and glucose) and organic acids (OAs; citric acid and malic acid) to various ionic (NH4+, K+, Mg-2(+), Ca-2(+), NO3-, SO42-, and PO43-) concentrations in fruit juice were determined. The results indicated that lower N supply reduced fruit number and yield, whereas it enhanced some of the quality attributes of fruit as indicated by greater firmness and higher concentrations of sugars and OAs. Elevated [CO2] (e[CO2]) attenuated the negative influence of reduced irrigation (DI and PRI) on FY. Principal component analysis revealed that the reduced irrigation regimes, especially PRI, in combination with e[CO2] could synergistically improve the comprehensive quality of tomato fruits at high N supply. These findings provide useful knowledge for sustaining tomato FY and quality in a future drier and CO2-enriched environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available