4.6 Article

Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 6, Issue 8, Pages 9725-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.8b00750

Keywords

Bio-derived PET bottle; Recycled-based PET bottle; Life-cycle analysis; Water consumption

Funding

  1. Bioenergy Technologies Office of the Office of Energy Efficiency and Renewable Energy of the United States. Department of Energy [DE-AC02-06CH11357]
  2. National Renewable Energy Laboratory for the United States. Department of Energy [DE-AC36-08G028308]

Ask authors/readers for more resources

Polyethylene terephthalate (PET) is a common plastic resin used to produce packaging, notably plastic bottles. Most PET bottles are produced from fossil fuel-derived feedstocks. Bio-derived and recycling-based pathways to PET bottles, however, could offer lower greenhouse gas (GHG) emissions than the conventional route. In this paper, we use life cycle analysis to evaluate the GHG emissions, fossil fuel consumption, and water consumption of producing one PET bottle from virgin fossil resources, recycled plastic, and biomass, considering each supply chain stage. We considered two routes to produce bottles from biomass: one in which all PET precursors (ethylene glycol and teraphthalic acid) are bio-derived and one in which only ethylene glycol is bio-derived. Bio-derived and recycled PET bottles offer both GHG emissions and fossil fuel consumption reductions ranging from 12% to 82% and 13% to 56%, respectively, on a cradle-to-grave basis compared to fossil fuel-derived PET bottles assuming PET bottles are landfilled. However, water consumption is lower in the conventional pathway to PET bottles. Water demand is high during feedstock production and conversion in the case of biomass-derived PET and during recycling in the case of bottles made from recycled PET.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available