4.4 Article

Activity-dependent decrease in contact areas between subsurface cisterns and plasma membrane of hippocampal neurons

Journal

MOLECULAR BRAIN
Volume 11, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s13041-018-0366-7

Keywords

ER-PM contact sites; Calcium regulation; Electron microscopy

Categories

Funding

  1. National Institute of Neurological Disorders and Stroke (NINDS)

Ask authors/readers for more resources

Subsurface cistern (SSC) in neuronal soma and primary dendrites is a specialized compartment of endoplasmic reticulum (ER) that is in close apposition (10 nm) with the plasma membrane (PM). ER-PM contact areas are thought to be involved in intracellular calcium regulation. Here, structural changes of SSC in hippocampal neurons were examined by electron microscopy upon depolarization with high K+ (90 mM) or application of NMDA (50 mu M) in rat dissociated cultures as well as organotypic slice cultures. The number and average length of SSC-PM contact areas in neuronal somas significantly decreased within 30 s under excitatory condition. This decrease in SSC-PM contact area progressed with time and was reversible. These results demonstrate a structural decoupling between the SSC and the PM upon stimulation, suggesting that there may be a functional decoupling of the calcium regulation. Because SSC-PM contact areas may mediate calcium influx, the decrease in contact area may protect neurons from calcium overload upon heightened stimulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available