4.3 Article

Beware of the toilet: The risk for a deep tissue injury during toilet sitting

Journal

JOURNAL OF TISSUE VIABILITY
Volume 27, Issue 1, Pages 23-31

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jtv.2017.04.005

Keywords

Sitting-acquired pressure ulcer; Pressure injury; Toilet seat; Computational modeling; Transcutaneous oxygen tension

Ask authors/readers for more resources

A pressure injury (PrI) compromises quality of life and can be life-threatening. The fundamental cause of PrIs is sustained deformations in weight-bearing soft tissues, e.g., during prolonged sitting on inadequate surfaces such as a toilet seat. In nursing homes and geriatric facilities, patients need assistance using the restroom, and patients being left on the toilet for tens-of-minutes is a real-world scenario, unfortunately. Nevertheless, there are no published studies regarding sustained tissue loads during toilet sitting and their effects on tissue physiology. Here, the biomechanical and microcirculatory responses of the buttock tissues to toilet sitting were investigated using finite element modeling and cutaneous hemodynamic measurements, to explore the potential etiology of PrIs occurring on the toilet. We found that prolonged sitting on toilet seats involves a potential risk for PrI development, the extent of which is affected by the seat design. Additionally, we found that specialized toilet seat cushions are able to reduce this risk, by lowering instantaneous tissue exposures to internal stresses (by up to 88%) and maintaining reduced interface pressures. Furthermore, hemodynamic variables were altered during the toilet sitting; in particular, tcPO(2) was decreased by 49% +/- 7% (44 +/- 2[mmHg] to 22 +/- 4[mmHg]) during sitting. The current study confirms that investing in expensive PrI prevention (PIP) products is likely to be ineffective for an immobilized patient who is left to sit on a bare toilet seat for long times. This argument highlights the need for a holistic-care approach, employing PIP devices that span across the entire environment where bodyweight forces apply to tissues. (C) 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available