4.7 Article

Admissible Delay Upper Bounds for Global Asymptotic Stability of Neural Networks With Time-Varying Delays

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2018.2797279

Keywords

Admissible delay upper bounds; global asymptotic stability; neural networks; time-varying delay

Funding

  1. Australian Research Council [DP160103567]

Ask authors/readers for more resources

This paper is concerned with global asymptotic stability of a neural network with a time-varying delay, where the delay function is differentiable uniformly bounded with delay-derivative bounded from above. First, a general reciprocally convex inequality is presented by introducing some slack vectors with flexible dimensions. This inequality provides a tighter bound in the form of a convex combination than some existing ones. Second, by constructing proper Lyapunov-Krasovskii functional, global asymptotic stability of the neural network is analyzed for two types of the time-varying delays depending on whether or not the lower bound of the delay derivative is known. Third, noticing that sufficient conditions on stability from estimation on the derivative of some Lyapunov-Krasovskii functional are affine both on the delay function and its derivative, allowable delay sets can be refined to produce less conservative stability criteria for the neural network under study. Finally, two numerical examples are given to substantiate the effectiveness of the proposed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available