4.7 Article

Detection of Surface Enrichment Driven by Molecular Weight Disparity in Virtually Monodisperse Polymers

Journal

ACS MACRO LETTERS
Volume 7, Issue 4, Pages 487-492

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsmacrolett.7b00993

Keywords

-

Funding

  1. National Science Foundation [CHE-1308307]
  2. University of Akron Research Foundation

Ask authors/readers for more resources

The preference for a shorter chain component at a polymer blend surface impacts surface properties key to application-specific performance. While such segregation is known for blends containing low molecular weight additives or systems with large polydispersity, it has not been reported for anionically polymerized polymers that are viewed, in practice, as monodisperse. Observations with surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which distinguishes surface species without labeling and provides the entire molecular weight distribution, demonstrate that entropically driven surface enrichment of shorter chains occurs even in low polydispersity materials. For 6 kDa polystyrene the number-average molecular weight (M-n) at the surface is ca. 300 Da (5%) lower than that in the bulk, and for 7 kDa poly(methyl methacryalate) the shift is ca. 500 Da. These observations are in qualitative agreement with results from a mean-field theory that considers a homopolyrner melt with a molecular-weight distribution matched to the experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available