4.7 Article

Involvement of orexin neurons in fasting- and central adenosine-induced hypothermia

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-21252-w

Keywords

-

Funding

  1. JSPS KAKENHI [17K14936, 16H05130, 16K13112]
  2. CREST JST [JPMJCR1656]
  3. Grants-in-Aid for Scientific Research [17K14936, 16K13112, 16H05130] Funding Source: KAKEN

Ask authors/readers for more resources

We examined whether orexin neurons might play a protective role against fasting- and adenosine-induced hypothermia. We first measured body temperature (BT) in orexin neuron-ablated (ORX-AB) mice and wild-type (WT) controls during 24 hours of fasting. As expected, the magnitude of BT drop and the length of time suffering from hypothermia were greater in ORX-AB mice than in WT mice. Orexin neurons were active just before onset of hypothermia and during the recovery period as revealed by calcium imaging in vivo using G-CaMP. We next examined adenosine-induced hypothermia via an intracerebroventricular administration of an adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA), which induced hypothermia in both ORX-AB and WT mice. The dose of CHA required to initiate a hypothermic response in ORX-AB mice was more than 10 times larger than the dose for WT mice. Once hypothermia was established, the recovery was seemingly slower in ORX-AB mice. Activation of orexin neurons during the recovery phase was confirmed by immunohistochemistry for c-Fos. We propose that orexin neurons play dual roles (enhancer in the induction phase and compensator during the recovery phase) in adenosine-induced hypothermia and a protective/compensatory role in fasting-induced hypothermia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available