4.7 Article

Femtosecond Laser Mass Spectrometry and High Harmonic Spectroscopy of Xylene Isomers

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-22055-9

Keywords

-

Funding

  1. Saudi Cultural Bureau
  2. Natural Science and Engineering Council of Canada
  3. Canada Research Chairs
  4. Canadian Foundation for Innovation
  5. EPSRC [EP/I032517/1]
  6. ERC (ASTEX) [290467]
  7. Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-86ER13491]

Ask authors/readers for more resources

Structural isomers, molecules having the same chemical formula but with atoms bonded in different order, are hard to identify using conventional spectroscopy and mass spectrometry. They exhibit virtually indistinguishable mass spectra when ionized by electrons. Laser mass spectrometry based on photoionization of the isomers has emerged as a promising alternative but requires shaped ultrafast laser pulses. Here we use transform limited femtosecond pulses to distinguish the isomers using two methods. First, we probe doubly charged parent ions with circularly polarized light. We show that the yield of doubly charged ortho-xylene decreases while para-xylene increases over a range of laser intensities when the laser polarization is changed from linear to circular. Second, we probe high harmonic generation from randomly oriented isomer molecules subjected to an intense laser field. We show that the yield of high-order harmonics varies with the positioning of the methyl group in xylene isomers (ortho-, para- and meta-) and is due to differences in the strength of tunnel ionization and the overlap between the angular peaks of ionization and photo-recombination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available