4.7 Article

SFTS phlebovirus promotes LC3-II accumulation and nonstructural protein of SFTS phlebovirus co-localizes with autophagy proteins

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-23610-0

Keywords

-

Funding

  1. National Natural Science Funds of China [31570167, 81401368]

Ask authors/readers for more resources

Autophagy is essential for eukaryotic cell homeostasis and can perform both anti-viral and proviral roles depending on the kinds of viruses, cell types and cell environment. Severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) is a newly discovered tick-borne virus in the Phenuiviridae family that causes a severe hemorrhagic fever disease in East Asia. In this study we determined interactions between SFTSV and autophagy. Our results showed that LC3-II (microtubule associated protein 1 light chain 3-II) protein accumulated from 4 h to 24 h after SFTSV infection compared to mock-infected Vero cells, and the use of E64d and pepstatin A did not affect the expression of LC3-II protein, which indicated that the increased LC3-II may be the result of inhibition of autophagic degradation caused by SFTSV infection. However, knockdown of LC3B promotes SFTSV replication, which indicated a negative role of LC3B protein in SFTSV replication. We also detected co-localization of SFTSV non-structure (NSs) protein with LC3B, p62 and Lamp2b respectively in SFTSV infected Vero cells, which indicated the possibility of selective autophagy or chaperone-mediated autophagy involving in SFTSV infection. Our results indicated that SFTSV infection promotes LC3 accumulation and several proteins of the autophagy pathway co-localize with NSs protein during SFTSV infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available