4.6 Article

Pioglitazone is effective for multiple phenotyepes of the Zucker fa/fa rat with polycystc ovary morphology and insulin resistance

Journal

JOURNAL OF OVARIAN RESEARCH
Volume 11, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s13048-018-0395-y

Keywords

PCOS; Polycystic ovary syndrome; PCO; Polycystic ovary; Zucker fa/fa rat; Insulin resistance; Atretic follicle; Pioglitazone; Insulin sensitizer; AMH; Adiponectin

Funding

  1. Ministry of Education, Science and Culture of Japan [25462568]
  2. Grants-in-Aid for Scientific Research [25462568] Funding Source: KAKEN

Ask authors/readers for more resources

Background: Hyperandrogenism and insulin resistance may be related to the etiology of PCOS. Zucker fa/fa rats with polycystic ovary are obese, have insulin resistance without diabetes mellitus or hyperandrogenism and can be utilized as PCOS model rats without effects of hyperandrogenemia. PCOS patients are reported to have elevated levels of serum anti-Mullerian hormone (AMH), which has an inhibitory action on folliculogenesis, and low levels of serum adiponectin, which blocks apoptosis and induces biological effects in some tissues. Pioglitazone, an insulin sensitizer, is administered to PCOS patients with insulin resistance to induce ovulation but the mechanisms by which this occurs have not been elucidated. Methods: We purchased 4-week-old female fatty Zucker fa/fa rats as well as lean Zucker +/+ rats for use as control rats with normal insulin sensitivity. The Zucker fa/fa rats were administered pioglitazone (2.5 mg/kg body weight/day) or a vehicle every day for 14 days in separate groups. The Zucker +/+ rats were also administered the vehicle. After 2 weeks of treatment, they were euthanized and we obtained serum samples and both ovaries and determined the body weight, ovarian weight, and serum AMH, adiponectin, testosterone, and androstenedione levels. We also examined ovarian histology to check follicle numbers by using hematoxylin-eosin staining, and the number of atretic follicles using Tdt-mediated dUTP nick end labeling (TUNEL) methods. Results: The Zucker fa/fa rats used as PCO model rats and Pioglitazone treated PCO model rats were significantly heavier than the Zucker +/+ control rats (p < 0.05) at 15 day old. Pioglitazone treatment did not influence body weight or ovarian weight in either group. However, the total number of follicles was significantly larger in the PCO model rats than in the control rats (P < 0.05). Although pioglitazone treatment appeared to decrease the total number of follicles in the PCO model rats, the decrease was not statistically significant. However, pioglitazone treatment significantly decreased the total number of atretic follicles and the rate of atreteic follicles in the PCO model rats (P < 0.05). The serum AMH level was significantly higher in the PCO model rats than in the control rats. Pioglitazone treatment significantly decreased the serum AMH level and significantly increased the serum adiponectin level in the PCO model rats (P < 0.05). Serum testosterone and androstenedione levels were quite low or undetectable in the 3 groups of rats, and were not influenced by pioglitazone treatment. Conclusion: In this study, pioglitazone treatment reduced the serum AMH level and increased the serum adiponectin level in PCO model rats. These effects are related to reduction of the total number of atretic follicles and rate of atretic follicles. This proves that pioglitazone treatment improves healthy follicle growth in these PCO model rats with insulin resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available