4.5 Article

GOOWE: Geometrically Optimum and Online-Weighted Ensemble Classifier for Evolving Data Streams

Journal

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3139240

Keywords

Ensemble classifier; concept drift; evolving data stream; dynamic weighting; geometry of voting; least squares; spatial modeling for online ensembles

Ask authors/readers for more resources

Designing adaptive classifiers for an evolving data stream is a challenging task due to the data size and its dynamically changing nature. Combining individual classifiers in an online setting, the ensemble approach, is a well-known solution. It is possible that a subset of classifiers in the ensemble outperforms others in a time-varying fashion. However, optimum weight assignment for component classifiers is a problem, which is not yet fully addressed in online evolving environments. We propose a novel data stream ensemble classifier, called Geometrically Optimum and Online-Weighted Ensemble (GOOWE), which assigns optimum weights to the component classifiers using a sliding window containing the most recent data instances. We map vote scores of individual classifiers and true class labels into a spatial environment. Based on the Euclidean distance between vote scores and ideal-points, and using the linear least squares (LSQ) solution, we present a novel, dynamic, and online weighting approach. While LSQ is used for batch mode ensemble classifiers, it is the first time that we adapt and use it for online environments by providing a spatial modeling of online ensembles. In order to show the robustness of the proposed algorithm, we use real-world datasets and synthetic data generators using the Massive Online Analysis (MOA) libraries. First, we analyze the impact of our weighting system on prediction accuracy through two scenarios. Second, we compare GOOWE with eight state-of-theart ensemble classifiers in a comprehensive experimental environment. Our experiments show that GOOWE provides improved reactions to different types of concept drift compared to our baselines. The statistical tests indicate a significant improvement in accuracy, with conservative time and memory requirements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available