4.5 Article

miR-495 inhibits proliferation, migration, and invasion and induces apoptosis via inhibiting PBX3 in melanoma cells

Journal

ONCOTARGETS AND THERAPY
Volume 11, Issue -, Pages -

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/OTT.S152362

Keywords

melanoma; miR-495; PBX3; cell migration; cell invasion

Ask authors/readers for more resources

Background: Amounting evidence indicate that miRNAs play an important role in the development of various cancers. MiR-495 is a potential tumor suppressor in cancers, however its role in melanoma is still elusive. The study aimed to investigate the role of miR-495 and the underlying mechanisms in melanoma cells. Methods: The levels of miR-495 in melanoma tissues and cell lines were measured by quantitative real-time polymerase chain reaction. Mimics of miR-495 was transfected into human melanoma cells A375 and MeWo. Cell viability of miR-495-transfected cells was assayed by MTT assay. Cell migration and invasion of miR-495 transfected cells were measured by wound healing assay and transwell assay, respectively. Nucleosome enzyme-linked immunosorbent assay was performed to measure the apoptosis induced by overexpression of miR-495. Luciferase reporter assays were performed to verify the interaction between miR-495 and its target PBX3. Results: It was found that the expression levels of miR-495 were down-regulated in melanoma tissues and cells. Moreover, overexpression of miR-495 inhibited melanoma cell proliferation, migration and invasion in vitro. PBX3 was identified as a target for inhibition by miR-495 and was confirmed by luciferase assay, quantitative real-time polymerase chain reaction and western blot. We also indicated that silencing of PBX3 also repressed melanoma cell proliferation, migration and invasion in vitro. Conclusion: In summary, our findings demonstrated that miR-495 functions as a tumor suppressor in human melanoma via directly targeting PBX3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available