4.5 Article

Adsorptive removal of phosphate from aqueous solutions using different types of red mud

Journal

WATER SCIENCE AND TECHNOLOGY
Volume -, Issue 2, Pages 570-577

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2018.182

Keywords

activated red mud; adsorption capacity; dynamic model; phosphate; red mud

Funding

  1. National Natural Science Foundation of China [41402039]
  2. Guizhou Provincial Science and Technology Foundation [[2016]1155]
  3. Guizhou Science and Technology Major Program [[2016]3015]

Ask authors/readers for more resources

Red mud (RM) is an industrial waste generated during production of alumina from using the Bayer process or the sintering process. Four types of red mud from China were characterized for their diverse chemical and mineral compositions using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray diffraction (XRD). Acid treatment was employed to obtain activated red mud (ARM), posing increased surface areas from 10-28 m(2)/g to 220-350 m(2)/g. RMs and ARMs were used to adsorb phosphate in solution to compare the adsorption capacity. Sample GZ3, a red mud from the sintering process, presented the highest adsorption capacity among the four raw RMs, posing an adsorption capacity of 0.37 mg P/g in the solution of 1 mg P/L with a solid/solution ratio of 0.5 g: 1 L. Whereas, activated GX (AGX), a high iron Bayer red mud from diaspore bauxite, showed the highest adsorption capacity of all the ARMs, with an adsorption capacity of 1.92 mg P/g in the same condition. The dynamic studies indicate that the adsorption mainly followed the pseudo second-order model. The models of Freundlich and Langmuir were used to simulate the sorption equilibrium on GZ3 and AGX. It suggests that the Freundlich model had a better correlation with GZ3 while the Langmuir model fitted well with AGX.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available