4.7 Article

Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms

Journal

VETERINARY MICROBIOLOGY
Volume 219, Issue -, Pages 171-177

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.vetmic.2018.04.017

Keywords

Salmonella; Shedding; Colonization; Single nucleotide variant; Pig; Mannan-binding lectin A (MBL1); Nucleotide-binding oligomerization domain-containing protein 1 (NOD1)

Funding

  1. Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA) Food Safety Research Program [FS2013-1869]
  2. OMAFRA-University of Guelph Research Partnership [UofG2013-1472]
  3. Natural Sciences and Engineering Research Council of Canada, Collaborative Research and Development [CRDPJ 488429-15]
  4. Swine Innovation Porc [1239e]
  5. Ontario Pork [15/015]
  6. Alliance Genetics Canada

Ask authors/readers for more resources

Foodborne human salmonellosis is an important food safety concern worldwide. Food-producing animals are one of the major sources of human salmonellosis, and thus control of Salmonella at the farm level could reduce Salmonella spread in the food supply system. Genetic selection of pigs with resistance to Salmonella infection may be one way to control Salmonella on swine farms. The objective of this study was to investigate the association between genetic variants in the porcine innate immune system with on-farm Salmonella shedding and Salmonella colonization tested at slaughter. Fourteen groups of pigs (total 809) were followed from birth to slaughter. Fecal samples collected five times at different stages of production and tissue samples obtained from tonsil and lymph nodes at slaughter were cultured for Salmonella. Genomic DNA was extracted and analyzed for 40 single nucleotide variants and two indels within porcine innate immune genes that were previously associated with Salmonella infection or other infectious diseases. A survey was used to collect information on farm management practices. A multilevel mixed-effects logistic regression modelling method was used to identify SNVs that are associated with Salmonella shedding and/or Salmonella colonization. One single nucleotide variant in the C-type lectin MBL1 and one single nucleotide variant in the cytosolic pattern recognition receptor NOD1 was associated with increased risk of on-farm shedding (p = 0.010) and internal colonization tested at slaughter (p = 0.018), respectively. These findings indicate the potential of these variants for genetic selection programs, aimed at controlling Salmonella shedding and colonization in pigs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available