4.6 Article

Rheological behavior and mechanism of pH-responsive wormlike micelle variations induced by isomers of phthalic acid

Journal

SOFT MATTER
Volume 14, Issue 22, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sm00467f

Keywords

-

Funding

  1. Shandong Provincial Natural Science Foundation [ZR2017LEE001]
  2. Fundamental Research Funds for the Central Universities [18CX02166A, 15CX08003A]
  3. Special Support for Post-doctoral Creative Funding in Shandong Province [201702026]
  4. National Science and Technology Major Projects [2017ZX05009-004]
  5. National Natural Science Foundation of China [51774309]
  6. China Postdoctoral Science Foundation [2017M612378]
  7. Qingdao Postdoctoral Application Research Project [2016222]

Ask authors/readers for more resources

Responsive wormlike micelles (WLMs) constructed by different carboxylic acids are fascinating. However, it is unknown how the position of the carboxylic groups alters the stimuli-response of wormlike micellar systems. Herein, three pH-responsive WLMs based on Gemini-like surfactants (named o-EAPA, m-EAPA, and p-EAPA) were formed and studied through the complexation of N-erucamidopropyl-N,N-dimethylamine (UC(22)AMPM) and o-phthalic acid (o-PA), m-phthalic acid (m-PA), or p-phthalic acid (p-PA) at the molar ratio of 2:1. The viscoelasticity, phase behavior and aggregate microstructure were separately explored by rheological, appearance observation and cryo-TEM methods. The results show that all phthalic acids can protonate UC(22)AMPM, thereby forming WLMs. However, with the shorter spacer distance between two carboxyl groups in phthalic acid, o-EAPA exhibits the longer length scale of aggregates and a more efficient thickening ability compared to the other two systems. Similar results in the N,N-dimethyl oleoaminde-propylamine (DOAPA) and o-PA, m-PA, and p-PA systems further verify the applicability of this mechanism. Furthermore, the phthalic acid based WLMs are found to exhibit intriguing reversible pH-responsive behaviors, which include promptly switching between a high elastic system and a low viscosity fluid by pH control. The o-EAPA system possesses a larger viscosity maximum, which produces more precipitous viscosity changes as the pH varies. This study is beneficial for the formation of pH-responsive WLMs and to determine their advantages for applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Chemistry, Physical

Synthesis of dimpled polymer-silica nanocomposite particles by interfacial swelling-based seeded polymerization

Yiping Yin, Zhe Wang, Hua Zou

Summary: This study presents a novel method for preparing dimpled polymer-silica nanocomposite particles using interfacial swelling-based seeded polymerization. The optimized conditions allow for a relatively high percentage of dimpled particles to be achieved.

SOFT MATTER (2024)

Article Chemistry, Physical

Tough polycyclooctene nanoporous membranes from etchable block copolymers

Brenden D. Hoehn, Elizabeth A. Kellstedt, Marc A. Hillmyer

Summary: Porous materials with nanometer-scale pores have important applications as nanoporous membranes. In this study, ABA triblock copolymers were used as precursors to produce nanoporous polymeric membranes (NPMs) in thin film form by degrading the end blocks. Polycyclooctene (PCOE) NPMs with tunable pore sizes were successfully prepared using solvent casting technique. Oxygen plasma etching was employed to improve the surface porosity and hydrophilicity of the membranes. This study provides a straightforward method to produce tough NPMs with high porosity and hydrophilic surface properties.

SOFT MATTER (2024)

Article Chemistry, Physical

Linear and ring polypeptides complexed with oppositely charged surfactants: the cohesion of the complexes as revealed in atomistic simulations

Vladislav S. Petrovskii, Stepan I. Zholudev, Igor I. Potemkin

Summary: This article investigates the behavior of linear and ring polypeptide chains in aqueous solution and explores the properties of the complexes formed by these chains with oppositely charged surfactants. The results demonstrate that the complexes of linear supercharged unfolded polypeptides and the corresponding surfactants exhibit impressive adhesive properties.

SOFT MATTER (2024)

Article Chemistry, Physical

Development of tissue-engineered vascular grafts from decellularized parsley stems

Merve Cevik, Serkan Dikici

Summary: Cardiovascular diseases are a leading cause of death globally, and vascular grafts are a promising treatment option. This study focuses on tissue-engineered vascular grafts (TEVGs) using decellularized parsley stems as a potential biomaterial. The decellularized parsley stems showed suitable properties for TEVGs, providing a suitable environment for human endothelial cells to form a pseudo endothelium. This study showcases the potential of using parsley stems for TEVGs.

SOFT MATTER (2024)

Article Chemistry, Physical

Control of liquid crystals combining surface acoustic waves, nematic flows, and microfluidic confinement

Gustavo A. Vasquez-Montoya, Tadej Emersic, Noe Atzin, Antonio Tavera-Vazquez, Ali Mozaffari, Rui Zhang, Orlando Guzman, Alexey Snezhko, Paul F. Nealey, Juan J. de Pablo

Summary: The optical properties of liquid crystals are typically controlled by electric fields. In this study, we investigate the effects of microfluidic flows and acoustic fields on the molecular orientation and optical response of nematic liquid crystals. We identify several previously unknown structures and explain them through calculations and simulations. These findings hold promise for the development of new systems combining sound, flow, and confinement.

SOFT MATTER (2024)

Article Chemistry, Physical

Shape memory hydrogels with remodelable permanent shapes and programmable cold-induced shape recovery behavior

Xinjun Wu, Xin Guan, Shushu Chen, Jiangpeng Jia, Chongyi Chen, Jiawei Zhang, Chuanzhuang Zhao

Summary: This research presents a novel shape memory hydrogel with a remodelable permanent shape and programmable cold-induced shape recovery behavior. The hydrogel is prepared using specific treatment methods to achieve shape fixation by heating and shape recovery by cooling. Additionally, deformable devices can be obtained by assembling hydrogel blocks with different concentrations.

SOFT MATTER (2024)

Article Chemistry, Physical

1H-NMR studies on the volume phase transition of DNA-modified pNipmam microgels

Rebecca Hengsbach, Gerhard Fink, Ulrich Simon

Summary: This study examines the properties of DNA functionalized pNipmam microgels and pure pNipmam microgels at different concentrations of sodium chloride and in PBS solutions using temperature dependent H-1-NMR measurements. The results show that DNA modification affects the volume phase transition temperature and the addition of salt and PBS further enhances this effect.

SOFT MATTER (2024)

Article Chemistry, Physical

Self-assembly of colloids with competing interactions confined in spheres

Ningyi Li, Junhong Li, Lijingting Qing, Shicheng Ma, Yao Li, Baohui Li

Summary: This paper investigates the self-assembly behavior of colloids with competing interactions under spherical confinement and finds that different ordered structures can be formed under different sized spherical confinements. Moreover, more perforated structures are formed in smaller spheres.

SOFT MATTER (2024)