4.7 Article

Influence of water content and shear rate on the mechanical behavior of soil-rock mixtures

Journal

SCIENCE CHINA-TECHNOLOGICAL SCIENCES
Volume 61, Issue 8, Pages 1127-1136

Publisher

SCIENCE PRESS
DOI: 10.1007/s11431-017-9277-5

Keywords

soil-rock mixture (S-RM); direct shear test; water content; shear rate; particle breakage

Funding

  1. National Natural Science Foundation of China [51479095, 41372316, 41572295]
  2. Youth Innovation Promotion Association of the Chinese Academy of Sciences [2015272]

Ask authors/readers for more resources

Soil-rock mixtures (S-RMs) are widely distributed in the nature. The mesoscopic deformation and failure mechanisms as well as the macro-mechanical behaviors of the S-RMs depend largely upon the rate of deformation, water content and particle sizes. In this research, a series of large-scale direct shear tests with different water contents and different grain-size distributions were conducted to study the influence of the aforementioned factors on the mechanical properties of the S-RMs. Due to the effect of the rock blocks' breakage in the S-RMs, the relationship between the shear strength and the vertical stress of S-RM follows a power law instead of a linear one. It is found that there exists a threshold value for the vertical stress during the shearing process, below which the soil strength is mainly determined by the inter-locking of particles and the re-arrangement of meso-structure, and otherwise large-sized rock blocks are gradually broken into smaller fragments, resulting in a decrease in the soil strength. The shear rate can also significantly influence the degree of particle breakage and the meso-structural rearrangement of the S-RMs, namely, under low shear rate, the particles of the samples are fully broken resulting in enhanced macro-strength. As a result, the lower the shear rate, the higher the macroscopic strength. So under unsaturated conditions, the water content will affect the strength of the S-RMs by reducing the strength of rock blocks. As the water content increases, the soil strength decreases gradually, and assumes a moderate value when the water content reaches 8%. At the same water content, the soil strength increases with the sizes of large rock blocks. For the occlusion, breakage and structure re-arrangement of the oversized rock blocks inside S-RM, which have a huge influence on the mechanical characteristics of the samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available