4.7 Article

Coal-to-biomass retrofit in Alberta -value of forest residue bioenergy in the electricity system

Journal

RENEWABLE ENERGY
Volume 125, Issue -, Pages 373-383

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2018.02.128

Keywords

Forest residue; Bioenergy; Emissions; Electrical system; Coal conversion

Funding

  1. Pacific Institute for Climate Solutions

Ask authors/readers for more resources

The use of forest residue may mitigate greenhouse gas emissions by displacing the use of coal or other fossil fuels for electricity generation. However, economic viability of bioenergy requires availability of feedstock at appropriate cost. The current work attempts to quantify delivered biomass cost at plant gate and estimate cost and emission benefits to the electricity system associated with the conversion of coal units to bioenergy. This study is carried out with the optimization model OSeMOSYS, analyzing the Alberta electrical system, its mid-term coal phase-out and renewable energy targets. Alternative scenarios were compared to evaluate the effect of a biomass retrofit option on the incentives needed to achieve 30% renewable penetration by 2030. Results show that although bioenergy has a higher levelized cost than wind power, the system requires less backup capacity and less renewable energy credits to meet renewable energy goals when the biomass retrofit is allowed. In addition, the total system cost to 2060 is found to be 5% less than the scenario without the biomass option. The firm capacity provided by biomass compensates for its higher levelized cost of energy. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available