4.7 Article

An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling

Journal

RENEWABLE ENERGY
Volume 116, Issue -, Pages 367-383

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2017.09.077

Keywords

Ambient temperature; PV generation; Risk assessment; Temperature-augmented probabilistic load flow (TPLF); Uncertainty modeling

Ask authors/readers for more resources

In this paper, the risk assessment of a PV integrated power system is accomplished by computing the over-limit probabilities and the severities of events such as under-voltage, over-voltage, over-load, and thermal over-load. These aspects are computed by performing temperature-augmented probabilistic load flow (TPLF) using Monte Carlo simulation. For TPLF, the historical data for PV generation, ambient temperature, and load power, each collected at twelve specific time instants of a day for the past five years are pre-processed by using three linear regression models for accurate uncertainty modeling. For PV generation data, the developed model is capable of filtering out the annual predictable periodic variation (owing to positioning of the Sun) and decreasing production trend due to ageing effect whereas, for ambient temperature and load power, the corresponding models accurately remove the annual cyclic variations in the data and their growth. The simulations pertaining to the aforesaid risk assessment are performed on a PV integrated New England 39-bus test system. The system over-limit risk indices are calculated for different PV penetrations and input correlations. In addition, the changes in the values of TPLF model parameters on the statistics of the result variables are analyzed. The risk indices so obtained help in executing necessary steps to reduce system risks for reliable operation. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available