4.6 Article

Macrophage polarization and acceleration of atherosclerotic plaques in a swine model

Journal

PLOS ONE
Volume 13, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0193005

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2017R1A2B2003191]
  2. Korea Healthcare Technology RD Project
  3. Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases
  4. Ministry for Health & Welfare Affairs, Republic of Korea [HI08C2149, HI15C1277]
  5. Cardiovascular Research Center, Seoul, Korea

Ask authors/readers for more resources

Aims Atherosclerosis is a well-known cause of cardiovascular disease and is associated with a variety of inflammatory reactions. However, an adequate large-animal model of advanced plaques to investigate the pathophysiology of atherosclerosis is lacking. Therefore, we developed and assessed a swine model of advanced atherosclerotic plaques with macrophage polarization. Methods Mini-pigs were fed a 2% high-cholesterol diet for 7 weeks followed by withdrawal periods of 4 weeks. Endothelial denudation was performed using a balloon catheter on 32 coronary and femoral arteries of 8 mini-pigs. Inflammatory proteins (high-mobility group box 1 [HMGB1] or tumor necrosis factor alpha (TNF-alpha) were injected via a micro-infusion catheter into the vessel wall. All lesions were assessed with angiography and optical coherence tomography and all tissues were harvested for histological evaluation. Results Intima/plaque area was significantly higher in the HMGB1- and TNF-alpha-injected groups compared to the saline-injected group (p = 0.002). CD68 antibody detection and polarization of M1 macrophages significantly increased in the inflammatory protein-injected groups (p<0.001). In addition, advanced atherosclerotic plaques were observed more in the inflammatory protein-injected groups compared with the control upon histologic evaluation. Conclusion Direct injection of inflammatory proteins was associated with acceleration of atherosclerotic plaque formation with M1 macrophage polarization. Therefore, direct delivery of inflammatory proteins may induce a pro-inflammatory response, providing a possible strategy for development of an advanced atherosclerotic large-animal model in a relatively short time period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available