4.8 Article

Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding

Journal

PLANT PHYSIOLOGY
Volume 176, Issue 4, Pages 3081-3102

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.17.00858

Keywords

-

Categories

Funding

  1. JST Core Research for Evolutional Science and Technology
  2. MEXT [22119007, 17H06473]
  3. JICA-JST SA-TREPS
  4. JSPS [17K15136]
  5. JST ERATO Grant [JPMJER1004]
  6. Grants-in-Aid for Scientific Research [22119007, 17K15136, 17K15209, 16J08722, 16K18565, 17H06473] Funding Source: KAKEN

Ask authors/readers for more resources

Water submergence is an environmental factor that limits plant growth and survival. Deepwater rice (Oryza sativa) adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses. A transcriptomic comparison between deepwater rice cv C9285 and nondeepwater rice cv Taichung 65 revealed both similar and differential expression patterns between the two genotypes during submergence. The expression of genes related to gibberellin biosynthesis, trehalose biosynthesis, anaerobic fermentation, cell wall modification, and transcription factors that include ethylene-responsive factors was significantly different between the varieties. Interestingly, in both varieties, the jasmonic acid content at the shoot base decreased during submergence, while exogenous jasmonic acid inhibited submergence-induced internode elongation in cv C9285, suggesting that jasmonic acid plays a role in the submergence response of rice. Furthermore, a targeted de novo transcript assembly revealed transcripts that were specific to cv C9285, including submergence-induced biotic stress-related genes. Our multifaceted transcriptome approach using the rice shoot base region illustrates a differential response to submergence between deepwater and nondeepwater rice. Jasmonic acid metabolism appears to participate in the submergence-mediated internode elongation response of deepwater rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available