4.3 Article

Salt and waterlogging stress impacts on seed germination and early seedling growth of selected endemic plant species from Western Australia

Journal

PLANT ECOLOGY
Volume 219, Issue 6, Pages 633-647

Publisher

SPRINGER
DOI: 10.1007/s11258-018-0823-5

Keywords

Germination; Salinity; Waterlogging; Seedling growth

Funding

  1. Australian Government National Heritage Trust [023191]

Ask authors/readers for more resources

Six perennial species endemic to South West Western Australia (Acacia trulliformis, Austrostipa geoffreyi, Banksia oligantha, B. mucronulata, Hakea tuberculata and Orthrosanthus muelleri) were screened for salt tolerance and recovery during seed germination. Growth and survival of 6-month old seedlings of these six plus a further vegetatively propagated species (Myoporum turbinatum) were subsequently examined in response to salt and waterlogging application. Water uptake under elevated saline conditions (200 and 400 mM NaCl) was slow, but not restrictive to germination. Moreover, a large proportion of seeds that were unable to germinate under saline conditions recovered after being transferred to non-saline conditions. Germination, growth and survival varied with species and the salt concentration used. Increasing salt concentrations tended to increase time to germination. Germination of Acacia trulliformis seeds declined exponentially with increasing salinity, and seedlings suffered reduced growth under saline and non-saline waterlogging. Austrostipa geoffreyi seeds were sensitive to saline treatments but seedlings were highly tolerant of both saline and/or waterlogged conditions. Germination of the three proteaceous species declined significantly under highly saline conditions (400 mM NaCl) with seedlings of the two Banksia species not surviving any treatment with the exception of non-saline waterlogging. Seedlings of H. tuberculata were more resilient to treatment conditions. Orthrosanthus muelleri was sensitive to salt stress during germination but was highly resistant to waterlogging, both saline and nonsaline. This study provides an insight into the response and resilience of components of the vegetation understorey of saline-affected regions of Western Australia not usually evaluated allowing for more informed restoration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available