4.5 Article

Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes

Journal

HYDROGEOLOGY JOURNAL
Volume 24, Issue 1, Pages 59-77

Publisher

SPRINGER
DOI: 10.1007/s10040-015-1326-2

Keywords

Sedimentary rocks; Hydraulic testing; Straddle packers; Blended head; Ambient head profile

Funding

  1. Boeing Company (Canoga Park, CA)
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Open boreholes in fractured rock often cross-connect fractures with differing hydraulic head and the head differences between these fractures cause vertical flow in the water column. This cross-connection has potential to bias transmissivity (T) values obtained from straddle packer tests. This study demonstrates how measurements of the blended head in the open-hole segments above and below the straddle-packer test interval can be used to correct packer tests for cross-connection effects. A pressure response observed in the open-hole segment above and/or below the packers isolating a test interval during a hydraulic test indicates short-circuiting of water from the injection interval through the vertically connected fracture network to the open-hole segments, resulting in the overestimation of T. A method is presented using blended head concepts to minimize this error using a trial-and-error procedure to determine the short-circuiting flow rate to account for the head conditions in the open-hole segments during each hydraulic test. Observed differences between the measured head and the calculated blended head in the open-hole segments above and below the test interval are attributed to cross-connection effects around the 1-m-long packers. The head and corrected T values determined from packer tests are used to estimate the flow in and out of the open hole at each of the intervals tested for assessing the cross-connection effects under open borehole conditions. Understanding open-hole flow dynamics gives insight about the potential for vertical cross connection of chemical constituents caused by the open hole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available