4.5 Article

Two novel COLVI long chains in zebrafish that are essential for muscle development

Journal

HUMAN MOLECULAR GENETICS
Volume 24, Issue 23, Pages 6624-6639

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddv368

Keywords

-

Funding

  1. Institut National de la Sante et de la Recherche Medicale (Inserm)
  2. Association Francaise contre les Myopathies (AFM)
  3. Sorbonne Universites - UPMC
  4. Centre National de la Recherche Scientifique (CNRS)

Ask authors/readers for more resources

Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two 'short' (alpha 1, alpha 2) and one 'long' chain (theoretically any one of alpha 3-6). In humans, defects in the most widely expressed heterotrimer (alpha 123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described alpha 4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian alpha 4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available