4.7 Article

Efficient potential well escape for bi-stable Duffing oscillators

Journal

NONLINEAR DYNAMICS
Volume 92, Issue 3, Pages 1045-1059

Publisher

SPRINGER
DOI: 10.1007/s11071-018-4107-3

Keywords

Bi-stable systems; Duffing oscillator; Nonlinear dynamics; Escape; Limit cycle oscillations

Funding

  1. Purdue Research Foundation (PRF)
  2. PRF

Ask authors/readers for more resources

The problem of escape from a potential well of bi-stable oscillators has attracted attention given the diversity of physical and engineering systems described by this mathematical model. Most previous studies have considered quasi-static dynamics leading to escape. In devising efficient escape strategies for structures, transient conditions have not yet received adequate consideration. In this study, the intra-well nonlinear resonant dynamics of bi-stable systems are studied and exploited, yielding a time-efficient strategy for triggering minimal amplitude escape by employing transient perturbations. The response characteristics of both, the symmetric and asymmetric double-well Duffing oscillators are explored analytically to identify the stable solution branches for any given forcing configuration. Based on the basins of attraction of the stable attractors, a novel actuation methodology employing controlled perturbations in the phase of the forcing for driving the system into a series of high-amplitude limit cycle oscillations and eventual escape to the desired stable solution is proposed. Additionally, accelerated settling to the desired configuration is achieved by implementing state feedback techniques. The proposed algorithm serves as a potential tool for implementing fast shape adaptation in bi-stable structural systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available