4.6 Article Proceedings Paper

Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes

Journal

NEW BIOTECHNOLOGY
Volume 48, Issue -, Pages 29-34

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nbt.2018.04.004

Keywords

Oxidative stress 3; Heavy metal; Cadmium; Rice; Bioengineering

Funding

  1. Ministry of Science and Technology of China [2016YFD0101904]
  2. Chinese Academy of Sciences [XDA08000000]
  3. National Natural Science Foundation of China [31271701]
  4. Department of Science and Technology of Guangdong Province [2010A020102002, 2015B020231009]

Ask authors/readers for more resources

Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available