4.5 Article

Complex Environmental Rearing Enhances Social Salience and Affects Hippocampal Corticotropin Releasing Hormone Receptor Expression in a Sex-Specific Manner

Journal

NEUROSCIENCE
Volume 369, Issue -, Pages 399-411

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2017.11.035

Keywords

enrichment; social behavior; adaptive; corticotropin releasing hormone; corticotropin releasing hormone receptor; corticosterone; serotonin receptor

Categories

Funding

  1. MCPHS Summer Undergraduate Research Fellowship (SURF)
  2. MCPHS Center for Professional Career Development Internship
  3. MCPHS Faculty Development Grant

Ask authors/readers for more resources

Methods for understanding the neurocircuitry of ethologically relevant behaviors have advanced substantially; however renovations to standard animal laboratory housing, in the form of enhanced enrichment, have lagged behind. This is despite evidence that environmental enrichment (EE) reduces stress, stereotypy, and promotes healthy species typical behaviors. While many scientists express interest for increased EE as a standard for animal caging systems, there are concerns that its effects on brain, behavior, and cognition are not well characterized. In the present study, male and female Sprague-Dawley rats were housed for six weeks in either EE, Colony Nesting (CN), or Standard Housing (SD) conditions. We show that adolescent exposure to environmental complexity changed the dynamics of social interactions, sensory processing, and underlying basal stress neurocircuitry, in a sex-and enrichment-type-dependent manner. Specifically, EE and CN increased prosocial engagement and the social saliency of male and female rats while the profile of hippocampal Crhr2 expression was affected only in EE males. Hippocampal Crh was associated with anxiety-like behavior in SD males - this did not extend to EE or CN groups, nor to females. Observations such as these are an important consideration for the validity of translational research investigating the neurocircuitry of stress resiliency, and for understanding the mechanisms of psychiatric disorders. Future work must focus on characterizing how individual environmental enhancements (e.g. novelty, social enrichment, physical activity) shape phenotypic differences, how they vary as a function of species, strain and sex, and (if warranted) how to meaningfully implement this knowledge into biomedical research designs. (C) 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available