4.2 Article

Blockage of spinal endothelin A receptors attenuates bone cancer pain via regulation of the Akt/ERK signaling pathway in mice

Journal

NEUROPEPTIDES
Volume 68, Issue -, Pages 36-42

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.npep.2018.01.003

Keywords

Endothelin A receptor antagonist; Bone cancer pain; Signalling pathway

Funding

  1. Anhui International Science and Technology Cooperation Program [1503062021]

Ask authors/readers for more resources

Bone cancer pain (BCP) is a common source of pain in patients with advanced stage and metastatic cancer; however, existing treatment for this kind of pain remains deficient. Being closely related to sensory change and inflammatory pain in both the central and peripheral nervous systems, endothelin A receptor (ETAR) plays an essential role in pain processing. As a result, ETAR antagonist has been reported to alleviate both neuropathic and inflammatory pain. Thus far, the role of ETAR in the process of BCP is still ambiguous. In this study, by using a BCP mouse model, the analgesic effect and molecular mechanism of the ETAR antagonist BQ-123 was investigated. Pain sensation in the BCP mouse model was investigated by the number of spontaneous flinches (NSF) and pain withdrawal threshold (PWT), and the mechanism of BCP was assessed by measuring p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 levels in L4-6 segments of the spinal cord. Our results demonstrated that BCP mice showed a higher NSF and a lower PWT score than Sham mice. In addition to the development of nociceptive sensitization, p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 were up-regulated correspondingly in L4-6 segments of the spinal cord in BCP mice. BQ-123 treatment showed a promising analgesic effect, and the effect was correlated to the down-regulation of p-Akt, p-Akt/t-Akt, p-ERK-1/2 and p-ERK-1/2/t-ERK-1/2 in spinal cord cells. The results suggested that intrathecal administration of BQ-123 was able to relieve BCP in mice as a consequence of suppressing the Akt and ERK signalling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available