4.8 Article

Amygdala Functional and Structural Connectivity Predicts Individual Risk Tolerance

Journal

NEURON
Volume 98, Issue 2, Pages 394-+

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2018.03.019

Keywords

-

Categories

Funding

  1. National Cancer Institute [R01 CA170297, R35 CA197461]
  2. National Institute of Drug Abuse [R01 DA029149]
  3. NATIONAL CANCER INSTITUTE [R35CA197461, R01CA170297] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE ON DRUG ABUSE [R01DA029149] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Risk tolerance, the degree to which an individual is willing to tolerate risk in order to achieve a greater expected return, influences a variety of financial choices and health behaviors. Here we identify intrinsic neural markers for risk tolerance in a large (n = 108) multimodal imaging dataset of healthy young adults, which includes anatomical and resting-state functional MRI and diffusion tensor imaging. Using a data-driven approach, we found that higher risk tolerance was most strongly associated with greater global functional connectivity (node strength) of and greater gray matter volume in bilateral amygdala. Further, risk tolerance was positively associated with functional connectivity between amygdala and medial prefrontal cortex and negatively associated with structural connectivity between these regions. These findings show how the intrinsic functional and structural architecture of the amygdala, and amygdala-medial prefrontal pathways, which have previously been implicated in anxiety, are linked to individual differences in risk tolerance during economic decision making.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available