4.8 Article

Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures

Journal

NANOSCALE
Volume 10, Issue 25, Pages 11760-11774

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr01349g

Keywords

-

Funding

  1. NSFC [51476160]

Ask authors/readers for more resources

Two-dimensional (2D) graphene oxide (GO) and molybdenum disulfide (MoS2) nanosheets (NSs) have been widely used as photothermal agents and as potential carriers of antitumor drugs. Their spatial thermal effects have been extensively explored for use at physiological and hyperthermic temperatures (37 to 46 degrees C). Furthermore, the modulation of the spatial thermal distributions with these NSs may have even more profound applications in the microstructural control of biomaterials at cryogenic temperatures (-196 to 37 degrees C). These applications include bioinspired microfabrication via freezing, food and drug freeze-drying, and biomaterial cryopreservation. However, such thermal effects of NSs and their applications at cryogenic temperatures had never been fully explored. Therefore, in this study, we have utilized the near-infrared laser induced photothermal effects of GO and MoS2 NSs to suppress the ice nucleation and ice crystal growth during warming of the biosamples. Using this approach, biological cells subjected to fast cooling to a deeply frozen state (-196 degrees C) were successfully recovered with high survival rates and full biological functionality. Thus, we provide a NS based effective approach to control the crystallization behaviors of water during warming at cryogenic temperatures, as NSs may have wide applications in both materials science and bioengineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available