4.7 Article

Histone Methyltransferase Setd7 Regulates Nrf2 Signaling Pathway by Phenethyl Isothiocyanate and Ursolic Acid in Human Prostate Cancer Cells

Journal

MOLECULAR NUTRITION & FOOD RESEARCH
Volume 62, Issue 18, Pages -

Publisher

WILEY
DOI: 10.1002/mnfr.201700840

Keywords

Nrf2; oxidative stress; PEITC; prostate cancer cells; Setd7

Funding

  1. National Center for Complementary and Integrative Health [AT009152, R01AT007065]
  2. Office of Dietary Supplements
  3. National Cancer Institute [CA200129]
  4. NATIONAL CANCER INSTITUTE [R01CA118947, R01CA200129] Funding Source: NIH RePORTER
  5. National Center for Complementary & Integrative Health [R01AT009152, R01AT007065] Funding Source: NIH RePORTER

Ask authors/readers for more resources

ScopeThis study aims to investigate the role of the epigenetic regulator SET domain-containing lysine methyltransferase 7 (Setd7) in regulating the antioxidant Nrf2 pathway in prostate cancer (PCa) cells and examines the effects of two phytochemicals, phenethyl isothiocyanate (PEITC) and ursolic acid (UA). Methods and resultsLentivirus-mediated shRNA knockdown of Setd7 in LNCaP and PC-3 cells decreases the expression of downstream Nrf2 targets, such as NAD(P)H: quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase theta 2 (Gstt2). Downregulation of Setd7 decreases soft agar colony formation ability of PCa cells. Knockdown of Setd7 increases reactive oxygen species (ROS) generation. Furthermore, Setd7 knockdown attenuates Nqo1 and Gstt2 expression in response to H2O2 challenge, whereas increased DNA damage is observed in Setd7 knockdown cells in comet assay. Interestingly, Setd7 expression could be induced by the dietary phytochemicals PEITC and UA. Chromatin immunoprecipitation (ChIP) assays show that Setd7 knockdown decreased H3K4me1 enrichment in the Nrf2 and Gstt2 promoter regions, while PEITC and UA treatments elevated the enrichment. ConclusionTaken together, these results indicate that Setd7 knockdown decreases Nrf2 and Nrf2-target genes expression and that PEITC and UA induce Setd7 expression, which activates the Nrf2/antioxidant response element (ARE) signaling pathway and protects DNA from oxidative damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available