4.5 Article

Telomere length, sibling competition and development of antioxidant defense in wild house mice

Journal

MECHANISMS OF AGEING AND DEVELOPMENT
Volume 169, Issue -, Pages 45-52

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.mad.2017.10.002

Keywords

Aging; Life cycle; Longitudinal; Maturity; Oxidative stress

Funding

  1. Academy of Finland [135653, 272713]
  2. Turku University Foundation

Ask authors/readers for more resources

Antioxidants and telomere length are potential biomarkers for individuals' exposure and ability to cope with environmental stressors. However, intraspecific variations in antioxidant alterations due to natural, life cycle related stress, have been rarely estimated. We investigated those changes in wild-derived house mice in a longitudinal study with natural sibling competition as a stressor. Blood was used for telomere length measurements at 8-weeks age and for several selected antioxidants at 8-weeks and 6-months age. Our results show that most of the antioxidants increase during that time, indicating that antioxidant-system continues to develop after early development and sexual maturation. In addition females had higher antioxidant-levels than males. Mice with longer telomeres had also higher superoxide dismutase-activity and more glutathione than mice with shorter telomeres, meaning that long telomeres are associated with better antioxidant defense at maturation and during later life. Sibling competition at early age affected superoxide dismutase-levels at 6-months, but only in females. Females, which were lighter than the average of the litter had low superoxide dismutase-activity in later adulthood, indicating delayed negative effect of sibling competition on antioxidant defense. Our results highlight that sex and developmental stage are crucial in intraspecific comparisons of the antioxidant status and its alterations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available