4.4 Article

Photocatalytic removal of NOx over immobilized BiFeO3 nanoparticles and effect of operational parameters

Journal

KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume 35, Issue 4, Pages 994-999

Publisher

KOREAN INSTITUTE CHEMICAL ENGINEERS
DOI: 10.1007/s11814-017-0331-7

Keywords

Air Pollution; Photocatalysis; Perovskite; Nanostructure; Bismuth Ferrite

Funding

  1. University of Tabriz - Iran

Ask authors/readers for more resources

Perovskite type BiFeO3 (BFO) was synthesized by sol-gel auto-combustion method. Synthesized BFO was immobilized on the micro slides glass plates by sol-gel dip-coating method. The sample was characterized by XRD, FESEM, UV-Vis DRS, and BET techniques. The XRD pattern confirmed the perovskite structure, and from the Debye-Scherrer equation the average crystalline size was calculated as 19 nm. The FE-SEM images of prepared BFO showed porous structure with low agglomeration. The band gap energy was calculated about 2.13 eV, and the specific surface area (SSA) of prepared BFO nanostructure was obtained 55.1m(2) g(-1). The photocatalytic activity of prepared pure and immobilized BFO was investigated in the removal of NOx under UV irradiation, in the batch photoreactor. The effects of operational parameters such as initial concentration of NOx, light intensity and amount of coated photocatalyst, under identical conditions, were investigated. The results showed that the highest conversion of NOx was obtained as 35.83% in the 5 ppm of NOx with 1.2 g immobilized BFO and under 15 W illumination lamp.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available