4.6 Article

RENOIR - A dataset for real low-light image noise reduction

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jvcir.2018.01.012

Keywords

Image denoising; Denoising dataset; Low light noise; Poisson-Gaussian noise model

Funding

  1. DARPA MSEE [FA 8650-11-1-7149]

Ask authors/readers for more resources

Image denoising algorithms are evaluated using images corrupted by artificial noise, which may lead to incorrect conclusions about their performances on real noise. In this paper we introduce a dataset of color images corrupted by natural noise due to low-light conditions, together with spatially and intensity-aligned low noise images of the same scenes. We also introduce a method for estimating the true noise level in our images, since even the low noise images contain small amounts of noise. We evaluate the accuracy of our noise estimation method on real and artificial noise, and investigate the Poisson-Gaussian noise model. Finally, we use our dataset to evaluate six denoising algorithms: Active Random Field, BM3D, Bilevel-MRF, Multi-Layer Perceptron, and two versions of NL-means. We show that while the Multi-Layer Perceptron, Bilevel-MRF, and NL-means with soft threshold outperform BM3D on gray images with synthetic noise, they lag behind on our dataset.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available