4.5 Review

Fatigue damage analysis of fiber-reinforced polymer composites-A review

Journal

JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
Volume 37, Issue 9, Pages 636-654

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0731684418754713

Keywords

Fiber; polymer; fatigue life; fiber volume fraction; fiber orientation

Ask authors/readers for more resources

Fiber-reinforced polymer composites are becoming suitable and substantial materials in the repair and replacement of conventional metallic materials because of their high strength and stiffness. These composites undergo various types of static and fatigue loads during service. One of the major tests that conventional and composite materials have to experience is fatigue test. It refers to the testing for the cyclic behavior of materials. Composite materials are different from metals, as they indicate a distinct behavior under fatigue loading. The fatigue damage and failure mechanisms are more intricate in composite materials than in metals in which a crack initiates and propagates up to fracture. In composite materials, several micro-cracks initiate at the primary stage of the fatigue growth, resulting in the initiation of various types of fatigue damage. Fiber volume fraction is an important parameter to describe a composite laminate. The fatigue strength increases with the increase of the fiber volume fraction to a certain level and then decreases because of the lack of enough resin to grip the fibers. The fatigue behavior of fiber-reinforced polymer composites depends on various factors, e.g., constituent materials, manufacturing process, hysteresis heating, fiber orientation, type of loading, interface properties, frequency, mean stress, environment. This review paper explores the effects of various parameters like fiber type, fiber orientation, fiber volume fraction, etc. on the fatigue behavior of fiber-reinforced polymer composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available