4.8 Article

Dynamic charge-discharge phase transitions in Li3V2(PO4)3 cathodes

Journal

JOURNAL OF POWER SOURCES
Volume 396, Issue -, Pages 437-443

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2018.06.023

Keywords

Li-ion batteries; Phase transition; Li3V2(PO4)(3); Operando PXD; Cathode materials

Funding

  1. Villum Foundation [VKR023453]
  2. Danish Council for Independent Research, Technology and Production [4184-00143A]

Ask authors/readers for more resources

Monoclinic alpha-Li3V2(PO4)(3) is a promising cathode material for future Li-ion batteries due to its high theoretical capacity, good capacity retention and relatively high ionic conductivity. The material undergoes a series of complex phase transitions which depend on the number of Li-ions extracted during charge. The phase behavior has been extensively studied under (quasi-) equilibrium conditions, however insight into the phase evolution during dynamic conditions is lacking. Through operando synchrotron X-ray diffraction we report the complex series of structural phase transitions under dynamic battery charge-discharge conditions in alpha-Li3V2(PO4)(3) cathodes with extraction of both two and three Li-ions. For extraction of two Li-ions, the phase evolution follows the series of expected two-phase transitions, while for extraction of three Li-ions the dynamic phase behavior differs significantly from that observed by equilibrium studies, e.g. we reveal unexpected solid solution behavior during removal of the last Li-ion and unforeseen structural hysteresis between charge and discharge. Our results are further reinforced by electrochemical analysis. This paper joins a series of recent reports, where extended solid solution behavior in battery electrode materials is observed under operando conditions, and reinforces the importance of these types of measurements to provide a more realistic picture of working battery materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available