4.6 Article

Cigarette smoke directly impairs skeletal muscle function through capillary regression and altered myofibre calcium kinetics in mice!

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 596, Issue 14, Pages 2901-2916

Publisher

WILEY
DOI: 10.1113/JP275888

Keywords

cigarette smoke; vascular; skeletal muscle

Funding

  1. NIH [1 PO1 HL091830-01A1, P30 NS047101]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [2603/2013]
  3. Fundacao Carlos Chagas Filho de Apoio a Pesquisa do Estado do Rio de Janeiro (FAPERJ-APQ1) [E-26/111.256/2014]
  4. CAPES

Ask authors/readers for more resources

Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca2+ accumulation, and a slowing in sarcoplasmic reticulum Ca2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available