4.5 Article

Computational Analysis for the Rational Design of Anti-Amyloid Beta (Aβ) Antibodies

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 122, Issue 16, Pages 4521-4536

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.8b01837

Keywords

-

Funding

  1. National Institutes of Health/NIGMS [GM093040, GM079383]

Ask authors/readers for more resources

Alzheimer's disease (AD) is a neurodegenerative disorder that lacks effective treatment options. Anti-amyloid beta (A beta) antibodies are the leading drug candidates to treat AD, but the results of clinical trials have been disappointing. Introducing rational mutations into anti-A beta antibodies to increase their effectiveness is a way forward, but the path to take is unclear. In this study, we demonstrate the use of computational fragment-based docking and MMPBSA binding free energy calculations in the analysis of anti-A beta antibodies for rational drug design efforts. Our fragment-based docking method successfully predicts the emergence of the common EFRH epitope. MD simulations coupled with MMPBSA binding free energy calculations are used to analyze scenarios described in prior studies, and we computationally introduce rational mutations into PFA1 to predict mutations that can improve its binding affinity toward the pE3-A beta(3-8) form of A beta. Two out of our four proposed mutations are predicted to stabilize binding. Our study demonstrates that a computational approach may lead to an improved drug candidate for AD in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available