4.5 Article

Poly(2-Ethyl-2-Oxazoline) as an Alternative to Poly(Vinylpyrrolidone) in Solid Dispersions for Solubility and Dissolution Rate Enhancement of Drugs

Journal

JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 107, Issue 9, Pages 2428-2438

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2018.05.015

Keywords

poly(2-ethyl-2-oxazoline); poly(vinylpyrrolidone); solid dispersion; dissolution; solubility; amorphous; glipizide

Funding

  1. Koc University
  2. IIE-SRF

Ask authors/readers for more resources

Poly(2-ethyl-2-oxazoline) (PEOX), a biocompatible polymer considered as pseudopolypeptide, was introduced as a potential alternative to the commonly used polymer, poly(vinylpyrrolidone) (PVP) for the preparation of solid dispersion with a poorly soluble drug. Glipizide (GPZ), a Biopharmaceutical Classification System class II model drug, was selected for solubility and dissolution rate study. GPZ-polymer solid dispersions and physical mixtures were characterized and investigated by X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, and FTIR spectroscopy. The impact of polymers on crystal nucleation kinetics was studied, and PEOX exhibited strong inhibitory effect compared with PVP. Solubility and dissolution behavior of the prepared solid dispersions and their physical blends were in vitro examined and evaluated. A significant enhancement in GPZ solubility was obtained with PEOX compared with the pure drug and solid dispersion with PVP. A big improvement in the intrinsic dissolution rate (45 times) and dissolved amount of GPZ (58 times) was achieved with PEOX in fasted state simulated intestinal fluid, against comparable enhancement observed with PEOX and PVP in phosphate buffer at pH 6.8. Lower molecular weight of PEOX-5K (5000 g/mol) was found to be superior to higher molecular weight PEOX-50K (50,000 g/mol) in the improvement of dissolution behavior. The findings of this study with GPZ as a model drug introduce lower molecular weight PEOX as a promising polymeric carrier toward better oral bioavailability of poorly soluble drugs. (c) 2018 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available