4.2 Article

Preparation and Photocatalytic Hydrogen Production of Pt-Graphene/TiO2 Composites from Water Splitting

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 18, Issue 1, Pages 48-55

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2018.14556

Keywords

Photocatalytic Water Splitting; Hydrogen; Pt; Graphene; TiO2

Ask authors/readers for more resources

Hydrogen is considered as a promising energy source with its high energy yield, renewable, environment friendly properties. TiO2 modified with noble metal and nonmetal is widely used. In this study, Pt and graphene (GN) were used to modify TiO2 nanoparticles. GN/TiO2 (TG), Pt-TiO2 (PT), Pt-GN/TiO2 (PTG) was successfully synthesized by modified Hummers' method, alcohol thermal and photodeposition method, respectively. The characterizations of the synthesized catalysts by UV-vis/DRS, components analysis, XRD and TEM analysis were conducted. Results showed the maximum hydrogen production rate was approximately 4.71 mmol h(-1) g(-1) when the Pt content was 1.0 wt.%. Higher and lower than 1.0 wt.% of Pt loading content both result in low efficiency of hydrogen production. The situation of graphene is similar to Pt. The optimal ratio for grapheme is 10 wt.%. The highest hydrogen production rate is 6.58 mmol h(-1) g(-1) by 1.5 wt.% Pt-5 wt.% GN/TiO2 (1.5PTG5), which is about 1.4 and 2.2 times higher than that of Pt-TiO2 and GN/TiO2 binary composites, respectively. The utilization of low-cost graphene can reduce the use of noble metal Pt in photocatalytic hydrogen production. The mechanism of Pt-GN/TiO2 for the improved photocatalytic activity is proposed. 0.1g L-1 is found to be the optimum catalyst concentration for optimal hydrogen production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available