4.7 Article

Investigation of Solidification and Segregation Characteristics of Cast Ni-Base Superalloy K417G

Journal

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
Volume 34, Issue 3, Pages 541-550

Publisher

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2016.11.009

Keywords

K417G superalloy; Solidification characteristics; Segregation; Isothermal solidification; Thermo-Calc simulation

Ask authors/readers for more resources

Differential scanning calorimetry (DSC) analysis, isothermal solidification experiment and Thermo-Calc simulation were employed to investigate solidification characteristics of K417G Ni-base superalloy. Electron probe microanalysis (EPMA) was employed to analyze the segregation characteristics. Liquidus, solidus and the formation temperatures of main phases were measured. In the process of solidification, the volume fraction of liquid dropped dramatically in the initial stage, while the dropping rate became very low in the final stage due to severe segregation of positive segregation elements into the residual liquid. The solidification began with the formation of primary gamma. Then with solidification proceeding, Ti and Mo were enriched in the liquid interdendrite, which resulted in the precipitation of MC carbides in the interdendrite. Al accumulated into liquid at the initial stage, but gathered to solid later due to the precipitation of gamma/gamma' eutectic at the intermediate stage of solidification. However, Co tended to segregate toward the solid phase. In the case of K417G alloy, combining DSC analysis and isothermal solidification experiment is a good way to investigate the solidification characteristics. Thermo-Calc simulation can serve as reference to investigate K417G alloy. (C) 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available