4.6 Article

Adenylyl cyclase 1 as a major isoform to generate cAMP signaling for apoA-1-mediated cholesterol efflux pathway

Journal

JOURNAL OF LIPID RESEARCH
Volume 59, Issue 4, Pages 635-645

Publisher

ELSEVIER
DOI: 10.1194/jlr.M082297

Keywords

macrophage; vesicle; lipid complex; filipin; cholesterol indicator

Funding

  1. National Natural Science Foundation of China [81170267]

Ask authors/readers for more resources

HDL apoA-1-mediated cholesterol efflux pathway requires multiple cellular proteins and signal transduction processes, including adenylyl cyclase (AC)/cAMP signaling. Due to the existence of multiple transmembrane AC isoforms, it was not known how many AC isoforms are expressed and which ones are essential for cholesterol efflux in macrophage foam cells. These questions were investigated in THP-1 macrophages in this study. Quantitative RT-PCR detected mRNAs for all nine transmembrane AC isoforms, but only the mRNA and protein of the AC1 isoform were consistently upregulated by cholesterol loading and apoA-1. AC1 shRNA interference decreased AC1 mRNA and protein levels, resulting in reduction of apoA-1-mediated cAMP production and cholesterol efflux, while the intracellular cholesterol levels remained high. Confocal microscopy showed that apoA-1 promoted translocation of cholesterol and formation of cholesterol-apoA-1 complexes (protrusions) on the cholesterol-loaded macrophage surface. AC1 shRNA-interfered macrophages showed no translocation of cholesterol to the cell surface. AC1 shRNA interference also disrupted cellular localization of the intracellular cholesterol indicator protein adipophillin, and the expression as well as surface translocation of ABCA1. Together, our results show that AC1 is a major isoform for apoA-1-activated cAMP signaling to promote cholesterol transport and exocytosis to the surface of THP-1 macrophage foam cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available