4.7 Article

Gallium Phosphide-on-Silicon Dioxide Photonic Devices

Journal

JOURNAL OF LIGHTWAVE TECHNOLOGY
Volume 36, Issue 14, Pages 2994-3002

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2018.2829221

Keywords

Gallium phosphide; integrated optics; nanophotonics; nanofabrication; ring resonator; wafer bonding

Funding

  1. European Union's Horizon 2020 Programme for Research and Innovation [732894]

Ask authors/readers for more resources

The development of integrated photonic circuits utilizing gallium phosphide requires a robust, scalable process for fabrication of GaP-on-insulator devices. Here, we present the first GaP photonic devices on SiO2. The process exploits direct wafer bonding of a GaP/AlxGa1-xP/GaP heterostructure onto a SiO2 -on-Si wafer followed by the removal of the GaP substrate and the AlxGa1-xP stop layer. Photonic devices such as grating couplers, waveguides, and ring resonators are patterned by inductively coupled-plasma reactive-ion etching in the top GaP device layer. The peak coupling efficiency of the fabricated grating couplers is as high as -4.8 dB. Optical quality factors of 20 000 as well as second-and third-harmonic generation are observed with the ring resonators. Because the large bandgap of GaP provides for low two-photon absorption at telecommunication wavelengths, the high-yield fabrication of GaP-on-insulator photonic devices enabled by this work is especially interesting for applications in nanophotonics, where high quality factors or low mode volumes can produce high electric field intensities. The large bandgap also enables integrated photonic devices operating at visible wavelengths.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available