4.5 Article

Investigating the Variability of High-Elevation Seasonal Orographic Snowfall Enhancement and Its Drivers across Sierra Nevada, California

Journal

JOURNAL OF HYDROMETEOROLOGY
Volume 19, Issue 1, Pages 47-67

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JHM-D-16-0254.1

Keywords

-

Funding

  1. NASA Earth and Space Science Graduate Fellowship [NNX14AK75H]
  2. NASA NEWS Grant [NNX15AD16G]
  3. NSF [EAR-1246473]
  4. NASA [809672, NNX15AD16G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

While orographically driven snowfall is known to be important in mountainous regions, a complete understanding of orographic enhancement from the basin to the mountain range scale is often inhibited by limited distributed data and spatial and/or temporal resolutions. A novel, 90-m spatially distributed snow water equivalent (SWE) reanalysis was used to overcome these limitations. Leveraging this SWE information, the interannual variability of orographic gradients in cumulative snowfall (CS) was investigated over 14 windward (western) basins in the Sierra Nevada in California from water years 1985 to 2015. Previous studies have not provided a detailed multidecadal climatology of orographic CS gradients or compared wet-year and dry-year orographic CS patterns, distributions, and gradients across an entire mountain range. The magnitude of seasonal CS gradients range from over 15 cm SWE per 100-m elevation to under 1 cm per 100 m with a 31-yr average of 6.1 cm per 100 m below similar to 2500 m in the western basins. The 31-yr average CS gradients generally decrease in higher elevation zones across the western basins and become negative at the highest elevations. On average, integrated vapor transport and zonal winds at 700 hPa are larger during wet years, leading to higher orographically driven CS gradients across the Sierra Nevada than in dry years. Below similar to 2500 m, wet years yield greater enhancement (relative to dry years) by factors of approximately 2 and 3 in the northwestern and southwestern basins, respectively. Overall, the western Sierra Nevada experiences about twice as much orographic enhancement during wet years as in dry years below the elevation corresponding to the 31-yr average maximum CS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available