4.7 Article

Watershed- to continental-scale influences on winter stormflow in the Southern Blue Ridge Mountains

Journal

JOURNAL OF HYDROLOGY
Volume 563, Issue -, Pages 643-656

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2018.06.013

Keywords

Storm hydrology; Geomorphology; Continental-scale teleconnections; Soil parent material

Funding

  1. NSF [DEB-9632854, DEB-0218001]

Ask authors/readers for more resources

Spatial and temporal influences on the winter (December-March) stormflow characteristics of fifteen United States Geological Survey (USGS)-gaged watersheds in the Southern Blue Ridge Mountains are identified: (1) watershed-scale differences in geomorphology; (2) continental-scale teleconnections during periods of wetness/dryness (based on the relative amount of winter precipitation over a consistent 20 year dataset); and (3) land cover in the context of soil parent material (e.g., development on alluvium/colluvium). Multiple regression was used to determine how much variance could be explained in five hydrologic variables describing the flashiness of peak flow (three original metrics), total seasonal flashiness (Richards Baker flashiness index), and the ratio of total winter stormflow to total discharge (the stormflow index). Models were constrained to three uncorrelated (vertical bar 0.65 vertical bar) variables to prevent overfitting to the dataset. Average-, dry-, and wet-years were subset using the z-scores for winter precipitation derived from the 4 km monthly PRISM (Parameter-elevation Relationships on Independent Slopes Model) dataset, for the period of 1986-2006. Relief, slope, and landscape connectivity explain the majority of explained variance in all five of the hydrologic variables during all time periods. During dry-, average-, and wet-years, atmospheric circulation patterns (i.e., North Atlantic Oscillation and Pacific/North American Pattern) explain more variance than total seasonal precipitation (PRISM), which is not true in the majority of the all-years models. Land cover explains only a small portion of the variance in regional stormflow and only when sub-divided based on soil parent material. Results provide a framework for connecting watershed-scale characteristics to regional- and continental-scale processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available