4.7 Article

Correlation between system performance and bacterial composition under varied mixing intensity in thermophilic anaerobic digestion of food waste

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 206, Issue -, Pages 472-481

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2017.10.062

Keywords

Thermophilic anaerobic digestion; Food waste; Mixing; 16S rRNA gene sequencing

Funding

  1. National Council for Scientific Research of Lebanon (CNRS) [02-11-12]
  2. American University of Beirut (AUB)

Ask authors/readers for more resources

This study examines the stability and efficiency of thermophilic anaerobic digesters treating food waste under various mixing velocities (50-160 rpm). The results showed that high velocities (120 and 160 rpm) were harmful to the digestion process with 18-30% reduction in methane generation and 1.8 to 3.8 times increase in volatile fatty acids (VFA) concentrations, compared to mild mixing (50 and 80 rpm). Also, the removal rate of soluble COD dropped from 75 to 85% (at 50-80 rpm) to 20-59% (at 120-160 rpm). Similarly, interrupted mixing caused adverse impacts and led to near-failure conditions with excessive VFA accumulation (15.6 g l(-1)), negative removal rate of soluble COD and low methane generation (132 ml gVS(-1)). The best efficiency and stability were achieved under mild mixing (50 and 80 rpm). In particular, the 50 rpm stirring speed resulted in the highest methane generation (573 ml gVS-1). High-throughput sequencing of 16S rRNA genes revealed that the digesters were dominated by one bacterial genus (Petrotoga; phylym Thermotogae) at all mixing velocities except at 0 rpm, where the community was dominated by one bacterial genus (Anaerobaculum; phylum Synergistetes). The Petrotoga genus seems to have played a major role in the degradation of organic matter. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available